Ouellette Paul-Étienne
J Opt Soc Am A Opt Image Sci Vis. 2019 Jul 1;36(7):1162-1172. doi: 10.1364/JOSAA.36.001162.
This study relates to the prediction of the angular positions of supernumerary screenbows and rainbows, in the case of a refractive sphere illuminated by a point source placed at a distance of h from its center; for h→∞, the incident light beam becomes parallel. The screenbow appears on a spherical screen whose center is that of the sphere and which intercepts the tangential caustic surface. The rainbow, specific to the water drop, but here generalized to any refractive sphere, corresponds to a screenbow produced on a "screen" placed at an infinite distance. This paper uses exact graphical representations of the wavefronts associated with rainbows resulting from k internal reflections to illustrate how the angular positions of the supernumerary rainbows and the positions of the corresponding supernumerary bows on screens are to be calculated. All considerations are made within the framework of geometrical optics being, on the one hand, the limit of the electromagnetic theory as the wavelength goes to 0, and, on the other hand, complemented by the Gouy phase shift theory.
本研究涉及在一个由位于距其中心h处的点光源照明的折射球情况下,超numerary screenbows和彩虹角位置的预测;当h→∞时,入射光束变为平行光。screenbow出现在一个球形屏幕上,该屏幕的中心与球的中心重合,并且与切向焦散面相交。彩虹,特定于水滴,但在这里推广到任何折射球,对应于在无限远处放置的“屏幕”上产生的screenbow。本文使用与由k次内反射产生的彩虹相关的波前的精确图形表示,来说明如何计算超numerary彩虹的角位置以及屏幕上相应超numerary bows的位置。所有考虑都是在几何光学的框架内进行的,一方面,几何光学是电磁理论在波长趋于0时的极限,另一方面,由古依相移理论进行补充。 (注:原文中“supernumerary screenbows”和“supernumerary bows”中的“supernumerary”可能有特定专业含义,暂保留英文未准确翻译,因为不太明确其确切所指的专业术语)