Suppr超能文献

利用3LCD投影和深度机器学习进行实时3D形状测量。

Real-time 3D shape measurement using 3LCD projection and deep machine learning.

作者信息

Nguyen Hieu, Dunne Nicole, Li Hui, Wang Yuzeng, Wang Zhaoyang

出版信息

Appl Opt. 2019 Sep 10;58(26):7100-7109. doi: 10.1364/AO.58.007100.

Abstract

For 3D imaging and shape measurement, simultaneously achieving real-time and high-accuracy performance remains a challenging task in practice. In this paper, a fringe-projection-based 3D imaging and shape measurement technique using a three-chip liquid-crystal-display (3LCD) projector and a deep machine learning scheme is presented. By encoding three phase-shifted fringe patterns into the red, green, and blue (RGB) channels of a color image and controlling the 3LCD projector to project the RGB channels individually, the technique can synchronize the projector and the camera to capture the required fringe images at a fast speed. In the meantime, the 3D imaging and shape measurement accuracy is dramatically improved by introducing a novel phase determination approach built on a fully connected deep neural network (DNN) learning model. The proposed system allows performing 3D imaging and shape measurement of multiple complex objects at a real-time speed of 25.6 fps with relative accuracy of 0.012%. Experiments have shown great promise for advancing scientific and engineering applications.

摘要

对于三维成像和形状测量而言,在实际应用中同时实现实时性和高精度仍然是一项具有挑战性的任务。本文提出了一种基于条纹投影的三维成像和形状测量技术,该技术使用三片式液晶显示器(3LCD)投影仪和深度机器学习方案。通过将三个相移条纹图案编码到彩色图像的红、绿、蓝(RGB)通道中,并控制3LCD投影仪分别投影RGB通道,该技术可以使投影仪和相机同步,从而快速捕获所需的条纹图像。与此同时,通过引入基于全连接深度神经网络(DNN)学习模型的新型相位确定方法,显著提高了三维成像和形状测量的精度。所提出的系统能够以25.6帧/秒的实时速度对多个复杂物体进行三维成像和形状测量,相对精度为0.012%。实验表明,该技术在推进科学和工程应用方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验