Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
Mol Biol Evol. 2020 Jan 1;37(1):100-109. doi: 10.1093/molbev/msz205.
The GLIS family transcription factors, GLIS1 and GLIS3, potentiate generation of induced pluripotent stem cells (iPSCs). In contrast, another GLIS family member, GLIS2, suppresses cell reprograming. To understand how these disparate roles arose, we examined evolutionary origins and genomic organization of GLIS genes. Comprehensive phylogenetic analysis shows that GLIS1 and GLIS3 originated during vertebrate whole genome duplication, whereas GLIS2 is a sister group to the GLIS1/3 and GLI families. This result is consistent with their opposing functions in cell reprograming. Glis1 evolved faster than Glis3, losing many protein-interacting motifs. This suggests that Glis1 acquired new functions under weakened evolutionary constraints. In fact, GLIS1 induces induced pluripotent stem cells more strongly. Transcriptomic data from various animal embryos demonstrate that glis1 is maternally expressed in some tetrapods, whereas vertebrate glis3 and invertebrate glis1/3 genes are rarely expressed in oocytes, suggesting that vertebrate (or tetrapod) Glis1 acquired a new expression domain and function as a maternal factor. Furthermore, comparative genomic analysis reveals that glis1/3 is part of a bilaterian-specific gene cluster, together with rfx3, ndc1, hspb11, and lrrc42. Because known functions of these genes are related to cilia formation and function, the last common ancestor of bilaterians may have acquired this cluster by shuffling gene order to establish more sophisticated epithelial tissues involving cilia. This evolutionary study highlights the significance of GLIS1/3 for cell reprograming, development, and diseases in ciliated organs such as lung, kidney, and pancreas.
GLIS 家族转录因子 GLIS1 和 GLIS3 增强诱导多能干细胞(iPSC)的生成。相比之下,另一个 GLIS 家族成员 GLIS2 则抑制细胞重编程。为了了解这些不同角色是如何产生的,我们研究了 GLIS 基因的进化起源和基因组组织。全面的系统发育分析表明,GLIS1 和 GLIS3 起源于脊椎动物全基因组复制,而 GLIS2 是 GLIS1/3 和 GLI 家族的姊妹群。这一结果与它们在细胞重编程中的相反功能一致。Glis1 的进化速度快于 Glis3,失去了许多蛋白相互作用的基序。这表明 Glis1 在较弱的进化约束下获得了新的功能。事实上,GLIS1 更强烈地诱导诱导多能干细胞。来自各种动物胚胎的转录组数据表明,某些四足动物中的 glis1 呈母源表达,而脊椎动物 glis3 和无脊椎动物 glis1/3 基因在卵母细胞中很少表达,这表明脊椎动物(或四足动物)Glis1 获得了一个新的表达域和作为母源因子的功能。此外,比较基因组分析显示,glis1/3 是两侧对称动物特异性基因簇的一部分,与 rfx3、ndc1、hspb11 和 lrrc42 一起。由于这些基因的已知功能与纤毛形成和功能有关,两侧对称动物的最后共同祖先可能通过重排基因顺序获得了这个基因簇,以建立涉及纤毛的更复杂的上皮组织。这项进化研究强调了 GLIS1/3 在细胞重编程、发育以及肺、肾和胰腺等纤毛器官疾病中的重要性。