Rozhkova T A, Titov V N, Amelyushkina V A, Kuharchuk V V
The Russian cardiologic R&D production complex of Minzdrav of Russia, 121552, Moscow, Russia.
Klin Lab Diagn. 2017;62(6):330-338. doi: 10.18821/0869-2084-2017-62-6-330-338.
In phylogenesis, the first transfer of all fatty acids to cells is implemented by high density lipoproteins. Later, unsaturated and polyene fatty acids are transferred to cell by low density lipoproteins. The insulin-depended cells absorb palmitic saturated fatty acid, oleic mono-unsaturated fatty acid and of the same name triglycerides in very low density lipoproteins. The hepatocytes secrete palmitic, oleic and linoleic very low density lipoproteins separately. In blood, under hydrolysis of triglycerides, cells absorb ligand palmitic and oleic very low density lipoproteins by force of апоЕ/В-100 endocytosis; they are not transformed into low density lipoproteins. The palmitic saturated fatty acids in the form of polyether of cholesterol turn into linoleic very low density lipoproteins from high density lipoproteins at impact of protein transferring polyene ethers of cholesterol. They transform very low density lipoproteins into low density lipoproteins of the same name; the cells absorb them by force of апоЕ/В-100 endocytosis. In physiological sense, amount of oleic very low density lipoproteins are always more than palmitic of very low density lipoproteins. Under syndrome of insulin-resistance there is no transformation of palmitic saturated fatty acid synthesized from glucose in vivo into oleic mono-saturated fatty acid. The hepatocytes secrete into blood mainly palmitic very low density lipoproteins which amount exceeds oleic very low density lipoproteins. Under slow hydrolysis in blood, main mass of palmitic very low density lipoproteins becomes palmitic low density lipoproteins. These very lipoproteins initiate hyperlipidemia, increase content of cholesterol of cholesterol-low density lipoproteins, lower cholesterol-high density lipoproteins, decrease bio-availability of polyene fatty acids for cells, trigger development of atherosclerosis and formation of atheromatosis in intima of arteries. The aphysiologic effect of surplus of palmitic saturated fatty acid in vivo and triglycerides of the same name can't be eliminated under increasing of content of ω-3 polyene fatty acids in food and effect of statines. All this is to be rationally applied in prevention of hypertriglyceridemia, atherosclerosis, atheromatosis of coronary arteries, ischemic heart disease and myocardium infarction.
在系统发育过程中,所有脂肪酸首次向细胞的转运是由高密度脂蛋白实现的。后来,不饱和脂肪酸和多烯脂肪酸则由低密度脂蛋白转运至细胞。胰岛素依赖型细胞从极低密度脂蛋白中摄取棕榈酸饱和脂肪酸、油酸单不饱和脂肪酸及同名甘油三酯。肝细胞分别分泌棕榈酸、油酸和亚油酸极低密度脂蛋白。在血液中,甘油三酯水解后,细胞通过载脂蛋白E/B-100内吞作用摄取配体棕榈酸和油酸极低密度脂蛋白;它们不会转化为低密度脂蛋白。在蛋白质转运胆固醇多烯醚的作用下,以胆固醇聚醚形式存在的棕榈酸饱和脂肪酸从高密度脂蛋白转化为亚油酸极低密度脂蛋白。它们将极低密度脂蛋白转化为同名低密度脂蛋白;细胞通过载脂蛋白E/B-100内吞作用摄取它们。从生理意义上讲,油酸极低密度脂蛋白的量总是多于棕榈酸极低密度脂蛋白。在胰岛素抵抗综合征下,体内由葡萄糖合成的棕榈酸饱和脂肪酸不会转化为油酸单不饱和脂肪酸。肝细胞向血液中主要分泌棕榈酸极低密度脂蛋白,其含量超过油酸极低密度脂蛋白。在血液中缓慢水解时,大部分棕榈酸极低密度脂蛋白会变成棕榈酸低密度脂蛋白。这些极低密度脂蛋白引发高脂血症,增加胆固醇低密度脂蛋白中的胆固醇含量,降低胆固醇高密度脂蛋白,降低细胞对多烯脂肪酸的生物利用度,引发动脉粥样硬化的发展并在动脉内膜形成动脉粥样瘤。体内棕榈酸饱和脂肪酸和同名甘油三酯过量所产生的病理生理效应,在食物中ω-3多烯脂肪酸含量增加及他汀类药物作用下无法消除。所有这些都应合理应用于预防高甘油三酯血症、动脉粥样硬化、冠状动脉粥样瘤、缺血性心脏病和心肌梗死。