文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

PD-L1 分布与癌症免疫治疗的前景——阻断、敲低或抑制。

PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition.

机构信息

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.

出版信息

Front Immunol. 2019 Aug 27;10:2022. doi: 10.3389/fimmu.2019.02022. eCollection 2019.


DOI:10.3389/fimmu.2019.02022
PMID:31507611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6718566/
Abstract

Cancer immunotherapy involves blocking the interactions between the PD-1/PD-L1 immune checkpoints with antibodies. This has shown unprecedented positive outcomes in clinics. Particularly, the PD-L1 antibody therapy has shown the efficiency in blocking membrane PD-L1 and efficacy in treating some advanced carcinoma. However, this therapy has limited effects on many solid tumors, suspecting to be relevant to PD-L1 located in other cellular compartments, where they play additional roles and are associated with poor prognosis. In this review, we highlight the advances of 3 current strategies on PD-1/PD-L1 based immunotherapy, summarize cellular distribution of PD-L1, and review the versatile functions of intracellular PD-L1. The intracellular distribution and function of PD-L1 may indicate why not all antibody blockade is able to fully stop PD-L1 biological functions and effectively inhibit tumor growth. In this regard, gene silencing may have advantages over antibody blockade on suppression of PD-L1 sources and functions. Apart from cancer cells, PD-L1 silencing on host immune cells such as APC and DC can also enhance T cell immunity, leading to tumor clearance. Moreover, the molecular regulation of PD-L1 expression in cells is being elucidated, which helps identify potential therapeutic molecules to target PD-L1 production and improve clinical outcomes. Based on our understandings of PD-L1 distribution, regulation, and function, we prospect that the more effective PD-L1-based cancer immunotherapy will be combination therapies.

摘要

癌症免疫疗法涉及使用抗体阻断 PD-1/PD-L1 免疫检查点之间的相互作用。这在临床上显示出了前所未有的积极效果。特别是,PD-L1 抗体疗法已显示出阻断膜 PD-L1 的效率,并在治疗某些晚期癌方面有效。然而,这种疗法对许多实体瘤的效果有限,这可能与位于其他细胞区室中的 PD-L1 有关,它们在那里发挥额外的作用并与预后不良相关。在这篇综述中,我们强调了基于 PD-1/PD-L1 的免疫疗法的 3 种当前策略的进展,总结了 PD-L1 的细胞分布,并回顾了细胞内 PD-L1 的多功能性。PD-L1 的细胞内分布和功能可能表明为什么并非所有抗体阻断都能够完全阻止 PD-L1 的生物学功能并有效抑制肿瘤生长。在这方面,基因沉默可能比抗体阻断在抑制 PD-L1 来源和功能方面具有优势。除了癌细胞,PD-L1 沉默在 APC 和 DC 等宿主免疫细胞上也可以增强 T 细胞免疫,从而导致肿瘤清除。此外,正在阐明 PD-L1 在细胞中表达的分子调控,这有助于确定潜在的治疗分子以靶向 PD-L1 的产生并改善临床结果。基于我们对 PD-L1 分布、调控和功能的理解,我们预计更有效的基于 PD-L1 的癌症免疫疗法将是联合疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/86c92a7a9a48/fimmu-10-02022-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/e2fc333b84d1/fimmu-10-02022-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/48b4a3d420cd/fimmu-10-02022-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/5333624412f3/fimmu-10-02022-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/86c92a7a9a48/fimmu-10-02022-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/e2fc333b84d1/fimmu-10-02022-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/48b4a3d420cd/fimmu-10-02022-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/5333624412f3/fimmu-10-02022-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce11/6718566/86c92a7a9a48/fimmu-10-02022-g0004.jpg

相似文献

[1]
PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition.

Front Immunol. 2019-8-27

[2]
The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment.

Front Immunol. 2020

[3]
The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer.

Mol Ther. 2021-6-2

[4]
Immune checkpoint blockade: Releasing the brake towards hematological malignancies.

Blood Rev. 2016-5

[5]
B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity.

Clin Cancer Res. 2018-3-12

[6]
PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy.

J Cell Physiol. 2018-9-7

[7]
Systemic Antitumor Immunity by PD-1/PD-L1 Inhibition Is Potentiated by Vascular-Targeted Photodynamic Therapy of Primary Tumors.

Clin Cancer Res. 2017-9-27

[8]
Inhibitors of the PD-1 Pathway in Tumor Therapy.

J Immunol. 2018-1-15

[9]
Recent advances in the clinical development of immune checkpoint blockade therapy.

Cell Oncol (Dordr). 2019-6-14

[10]
Combinations of Bevacizumab With Cancer Immunotherapy.

Cancer J. 2018

引用本文的文献

[1]
Induction of the STING-dependent DNA damage pathway by cucurbitacin B enhances immunotherapy efficacy in osteosarcoma.

Iran J Basic Med Sci. 2025

[2]
The role and mechanism of ARID1A in immunotherapy of gastric cancer.

Clin Exp Med. 2025-8-6

[3]
Inhibition of TFF3 improves the infiltration and function of CD8 T cells by downregulating the expression of PD-L1 in colorectal cancer.

Int J Colorectal Dis. 2025-8-5

[4]
Transformable self-assembling peptide nanoplatforms with tumor microenvironment responsiveness for tumor stem cell suppression and immunomodulation.

Mater Today Bio. 2025-7-10

[5]
Application of the PDCA cycle in companion diagnostic PD-L1 SP263 immunohistochemical testing.

BMC Cancer. 2025-7-12

[6]
Polygonatum polysaccharides as gut microbiota modulators: implications for autophagy-dependent PD-L1 clearance in cancer immunotherapy.

Front Nutr. 2025-6-24

[7]
Tumor-expressing PD-L1 regulates NT5E expression through MAPK/ERK pathway in triple-negative breast cancer.

Oncol Res. 2025-6-26

[8]
Cytoplasmic and nuclear programmed death ligand 1 expression in peritumoral stromal cells in breast cancer: Prognostic and predictive value.

World J Exp Med. 2025-6-20

[9]
Predicting atezolizumab response in metastatic urothelial carcinoma patients using machine learning on integrated tumour gene expression and clinical data.

NPJ Precis Oncol. 2025-6-10

[10]
Aptamer-ODN Chimeras: Enabling Cell-Specific ODN Targeting Therapy.

Cells. 2025-5-12

本文引用的文献

[1]
Devising new lipid-coated calcium phosphate/carbonate hybrid nanoparticles for controlled release in endosomes for efficient gene delivery.

J Mater Chem B. 2017-9-14

[2]
Cancer Cell-Intrinsic PD-1 and Implications in Combinatorial Immunotherapy.

Front Immunol. 2018-7-30

[3]
Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC).

J Immunother Cancer. 2018-5-16

[4]
PD-1 Expression in Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL) and Large B-cell Richter Transformation (DLBCL-RT): A Characteristic Feature of DLBCL-RT and Potential Surrogate Marker for Clonal Relatedness.

Am J Surg Pathol. 2018-7

[5]
Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

Oncoimmunology. 2018-1-29

[6]
Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis.

BMJ. 2018-3-14

[7]
Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis.

Lancet. 2018-3-10

[8]
Combination Strategies Using EGFR-TKi in NSCLC Therapy: Learning from the Gap between Pre-Clinical Results and Clinical Outcomes.

Int J Biol Sci. 2018-2-5

[9]
Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy.

J Drug Target. 2018-2-20

[10]
A potential biomarker for anti-PD-1 immunotherapy.

Nat Med. 2018-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索