Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria.
J Chem Phys. 2019 Sep 14;151(10):104107. doi: 10.1063/1.5110885.
We investigate the basis-set convergence of electronic correlation energies calculated using coupled cluster theory and a recently proposed finite basis-set correction technique. The correction is applied to atomic and molecular systems and is based on a diagrammatically decomposed coupled cluster singles and doubles (CCSD) correlation energy. Only the second-order energy and the particle-particle ladder term are corrected for their basis-set incompleteness error. We present absolute correlation energies and results for a large benchmark set. Our findings indicate that basis set reductions by two cardinal numbers are possible for atomization energies, ionization potentials, and electron affinities without compromising accuracy when compared to conventional CCSD calculations. In the case of reaction energies, we find that reductions by one cardinal number are possible compared to conventional CCSD calculations. The employed technique can readily be applied to other many-electron theories without the need for three- or four-electron integrals.
我们研究了使用耦合簇理论和最近提出的有限基组修正技术计算电子相关能的基组收敛性。该修正适用于原子和分子体系,基于图表分解的耦合簇单双激发(CCSD)相关能量。仅对二阶能量和粒子-粒子梯级项进行修正,以消除其基组不完备误差。我们提供了绝对相关能量和大型基准集的结果。我们的发现表明,与传统的 CCSD 计算相比,在原子化能、电离势和电子亲合能方面,基组减少两个基数是可能的,而不会影响准确性。在反应能的情况下,我们发现与传统的 CCSD 计算相比,基组减少一个基数是可能的。所采用的技术可以很容易地应用于其他多电子理论,而无需三电子或四电子积分。