Computer-aided Fluid Engineering AB, Frankes väg 3, 371 65 Lyckeby, Sweden.
Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.
J Contam Hydrol. 2019 Dec;227:103552. doi: 10.1016/j.jconhyd.2019.103552. Epub 2019 Sep 3.
A numerical reactive transport model for crystalline rocks is developed and evaluated. The model is based on mineral maps generated by X-ray micro computed tomography (X-μCT); the maps used have a resolution of approximately 30 μm and the rock samples are on the cm scale. A computational grid for the intergranular space is generated and a micro-DFN (Discrete Fracture Network) model governs the grid properties. A particle tracking method (Time Domain Random Walk) is used for transport simulations. The basic concept of the model can now be formulated as follows; "when a particle is close to a reactive mineral surface it has a certain probability to get sorbed during a certain time span. Once sorbed it will remain so a certain time". The model requires a number of input parameters that represent the sorption properties of the reactive minerals. Attempts are made to relate the parameters to traditional distribution parameters. The model is evaluated by comparisons with recent laboratory experimental data. These experiments consider two rock types (veined gneiss and pegmatitic granite) and two radionuclides (cesium and barium). It is concluded that the new reactive transport model can simulate the experimental data in a consistent and realistic way.
开发并评估了一种用于结晶岩的数值反应传输模型。该模型基于 X 射线微计算机断层扫描(X-μCT)生成的矿物图;所使用的地图分辨率约为 30 μm,岩石样本的尺寸为厘米级。生成了用于颗粒间空间的计算网格,并采用微 DFN(离散裂缝网络)模型控制网格属性。使用粒子跟踪方法(时域随机游走)进行传输模拟。该模型的基本概念现在可以表述为:“当粒子接近反应性矿物表面时,它在一定的时间跨度内具有一定的被吸附的概率。一旦被吸附,它将在一定的时间内保持吸附状态。”该模型需要一些输入参数来表示反应性矿物的吸附特性。尝试将这些参数与传统的分布参数相关联。该模型通过与最近的实验室实验数据进行比较来进行评估。这些实验考虑了两种岩石类型(脉状片麻岩和伟晶花岗岩)和两种放射性核素(铯和钡)。结论是,新的反应传输模型可以以一致和现实的方式模拟实验数据。