文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

估算罕见病的累计点患病率:对孤儿药数据库的分析。

Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database.

机构信息

Inserm, US14-Orphanet, Paris, France.

Orphanet Ireland, National Rare Diseases Office, Mater Misericordiae University Hospital, Dublin, Ireland.

出版信息

Eur J Hum Genet. 2020 Feb;28(2):165-173. doi: 10.1038/s41431-019-0508-0. Epub 2019 Sep 16.


DOI:10.1038/s41431-019-0508-0
PMID:31527858
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6974615/
Abstract

Rare diseases, an emerging global public health priority, require an evidence-based estimate of the global point prevalence to inform public policy. We used the publicly available epidemiological data in the Orphanet database to calculate such a prevalence estimate. Overall, Orphanet contains information on 6172 unique rare diseases; 71.9% of which are genetic and 69.9% which are exclusively pediatric onset. Global point prevalence was calculated using rare disease prevalence data for predefined geographic regions from the 'Orphanet Epidemiological file' (http://www.orphadata.org/cgi-bin/epidemio.html). Of the 5304 diseases defined by point prevalence, 84.5% of those analysed have a point prevalence of <1/1 000 000. However 77.3-80.7% of the population burden of rare diseases is attributable to the 4.2% (n = 149) diseases in the most common prevalence range (1-5 per 10 000). Consequently national definitions of 'Rare Diseases' (ranging from prevalence of 5 to 80 per 100 000) represent a variable number of rare disease patients despite sharing the majority of rare disease in their scope. Our analysis yields a conservative, evidence-based estimate for the population prevalence of rare diseases of 3.5-5.9%, which equates to 263-446 million persons affected globally at any point in time. This figure is derived from data from 67.6% of the prevalent rare diseases; using the European definition of 5 per 10 000; and excluding rare cancers, infectious diseases, and poisonings. Future registry research and the implementation of rare disease codification in healthcare systems will further refine the estimates.

摘要

罕见病是一个新出现的全球公共卫生重点,需要基于证据来估计全球现患率,以为公共政策提供信息。我们使用孤儿药数据库中公开的流行病学数据来计算这样的现患率估计值。总体而言,孤儿药数据库包含 6172 种独特罕见病的信息;其中 71.9%是遗传的,69.9%是专属于儿科发病的。全球现患率是使用“孤儿药流行病学文件”(http://www.orphadata.org/cgi-bin/epidemio.html)中预定义地理区域的罕见病患病率数据计算得出的。在按现患率定义的 5304 种疾病中,分析的 84.5%的疾病现患率<1/100 万。然而,罕见病负担的 77.3-80.7%归因于最常见流行率范围(1-5/10000)中的 4.2%(n=149)疾病。因此,尽管“罕见病”的定义(流行率为 5-80/100000)在范围上有所不同,但各国对罕见病的定义代表了不同数量的罕见病患者。我们的分析得出了一个保守的、基于证据的罕见病人群现患率估计值,为 3.5-5.9%,相当于全球任何时间点有 2.63-4.46 亿人受影响。这个数字是根据 67.6%的现患罕见病数据得出的;使用欧洲的 5/10000 的定义;并排除了罕见癌症、传染病和中毒。未来的登记研究和罕见病编码在医疗保健系统中的实施将进一步完善这些估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/3b7395547882/41431_2019_508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/b4f3431895b4/41431_2019_508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/e013a64385f7/41431_2019_508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/ca1a59f0c78f/41431_2019_508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/3b7395547882/41431_2019_508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/b4f3431895b4/41431_2019_508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/e013a64385f7/41431_2019_508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/ca1a59f0c78f/41431_2019_508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/6974615/3b7395547882/41431_2019_508_Fig4_HTML.jpg

相似文献

[1]
Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database.

Eur J Hum Genet. 2020-2

[2]
[Orphanet and its consortium: where to find expert-validated information on rare diseases].

Rev Neurol (Paris). 2013-2

[3]
ORPHAcodes use for the coding of rare diseases: comparison of the accuracy and cross country comparability.

Orphanet J Rare Dis. 2023-9-4

[4]
Italian cancer figures--Report 2015: The burden of rare cancers in Italy.

Epidemiol Prev. 2016

[5]
Rare diseases in ICD11: making rare diseases visible in health information systems through appropriate coding.

Orphanet J Rare Dis. 2015-3-26

[6]
CEMARA an information system for rare diseases.

Stud Health Technol Inform. 2010

[7]
CEMARA: a Web dynamic application within a N-tier architecture for rare diseases.

Stud Health Technol Inform. 2008

[8]
Estimating prevalence of rare genetic disease diagnoses using electronic health records in a children's hospital.

HGG Adv. 2024-10-10

[9]
Overview of patients' cohorts in the French National rare disease registry.

Orphanet J Rare Dis. 2023-7-3

[10]
Nationwide comprehensive epidemiological study of rare diseases in Japan using a health insurance claims database.

Orphanet J Rare Dis. 2022-3-28

引用本文的文献

[1]
A cohort of allogeneic hematopoietic stem cell transplantation for pediatric rare diseases (allo-HSCT-PRD): design and preliminary results.

Ann Hematol. 2025-9-6

[2]
Prenatal diagnosis of rare genetic disorders: fourteen years' experience of a tertiary genetic centre from India.

Orphanet J Rare Dis. 2025-9-2

[3]
Optimizing gene prioritization for clinical diagnosis of metabolic genetic disorders.

PLoS One. 2025-8-29

[4]
AI-Based Facial Phenotyping Supports a Shared Molecular Axis in -, -, and -Related Syndromes.

Int J Mol Sci. 2025-8-18

[5]
Parents as First Responders: Experiences of Emergency Care in Children with Nemaline Myopathy: A Qualitative Study.

Nurs Rep. 2025-7-29

[6]
Identification of a Novel GRM1 Frameshift Variant in Two Pakistani Families Broadens the Genetic Landscape of Ultra-Rare Spinocerebellar Ataxia Type 13.

Cerebellum. 2025-8-27

[7]
Caregiving Interactions and Behaviors in the Care of Children with Rare Genetic or Undiagnosed Conditions.

J Child Fam Stud. 2023-11

[8]
Demographic and Clinical Profile of Patients with Osteogenesis Imperfecta Hospitalized Due to Coronavirus Disease (COVID)-19: A Case Series of 13 Patients from Brazil.

Healthcare (Basel). 2025-7-23

[9]
Enhancing Rare Disease Awareness and Education Among Medical Professionals and Students in Türkiye.

J Eval Clin Pract. 2025-8

[10]
Insights on Clinical Development of Cell and Gene Therapy for Rare Diseases-by DahShu Innovative Design Scientific Working Group (IDSWG).

Ther Innov Regul Sci. 2025-8-8

本文引用的文献

[1]
The burden of rare diseases.

Am J Med Genet A. 2019-3-18

[2]
Healthcare burden of rare diseases in Hong Kong - adopting ORPHAcodes in ICD-10 based healthcare administrative datasets.

Orphanet J Rare Dis. 2018-8-28

[3]
The prevalence of autosomal dominant polycystic kidney disease (ADPKD): A meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition.

PLoS One. 2018-1-16

[4]
Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges.

Diabetes Metab Syndr Obes. 2017-9-13

[5]
Defining rare diseases in China.

Intractable Rare Dis Res. 2017-5

[6]
The collective impact of rare diseases in Western Australia: an estimate using a population-based cohort.

Genet Med. 2017-5

[7]
Public Health and Rare Diseases: Oxymoron No More.

Prev Chronic Dis. 2016-1-14

[8]
Rare Disease Terminology and Definitions-A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group.

Value Health. 2015-9

[9]
Rare disease policies to improve care for patients in Europe.

Biochim Biophys Acta. 2015-10

[10]
Geographic variations in epidemiology of two autoimmune bullous diseases: pemphigus and bullous pemphigoid.

Arch Dermatol Res. 2015-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索