Suppr超能文献

搜寻银河系中心p波暗物质湮灭产生的伽马射线辐射。

Search for Gamma-ray Emission from p-wave Dark Matter Annihilation in the Galactic Center.

作者信息

Johnson C, Caputo R, Karwin C, Murgia S, Ritz S, Shelton J

机构信息

Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.

Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

出版信息

Phys Rev D. 2019 May 15;99(10). doi: 10.1103/PhysRevD.99.103007.

Abstract

Indirect searches for dark matter through Standard Model products of its annihilation generally assume a cross-section which is dominated by a term independent of velocity (-wave annihilation). However, in many DM models an -wave annihilation cross-section is absent or helicity suppressed. To reproduce the correct DM relic density in these models, the leading term in the cross section is proportional to the DM velocity squared (-wave annihilation). Indirect detection of such -wave DM is difficult because the average velocities of DM in galaxies today are orders of magnitude slower than the DM velocity at the time of decoupling from the primordial thermal plasma, thus suppressing the annihilation cross-section today by some five orders of magnitude relative to its value at freeze out. Thus -wave DM is out of reach of traditional searches for DM annihilations in the Galactic halo. Near the region of influence of a central supermassive black hole, such as Sgr A*, however, DM can form a localized over-density known as a "spike". In such spikes the DM is predicted to be both concentrated in space and accelerated to higher velocities, thereby allowing the -ray signature from its annihilation to potentially be detectable above the background. We use the Large Area Telescope to search for the -ray signature of -wave annihilating DM from a spike around Sgr A* in the energy range 10 GeV-600 GeV. Such a signal would appear as a point source and would have a sharp line or box-like spectral features difficult to mimic with standard astrophysical processes, indicating a DM origin. We find no significant excess of rays in this range, and we place upper limits on the flux in -ray boxes originating from the Galactic Center. This result, the first of its kind, is interpreted in the context of different models of the DM density near Sgr A*.

摘要

通过暗物质湮灭的标准模型产物对暗物质进行间接搜寻,通常假定其截面由一个与速度无关的项主导(s波湮灭)。然而,在许多暗物质模型中,不存在p波湮灭截面或其螺旋度被抑制。为了在这些模型中重现正确的暗物质遗迹密度,截面中的主导项与暗物质速度的平方成正比(p波湮灭)。对这种p波暗物质进行间接探测很困难,因为如今星系中暗物质的平均速度比其从原始热等离子体解耦时的速度慢几个数量级,因此相对于其在冻结时刻的值,如今的湮灭截面被抑制了大约五个数量级。所以,p波暗物质超出了在银河晕中对暗物质湮灭进行传统搜寻的范围。然而,在一个中心超大质量黑洞(如人马座A*)的影响区域附近,暗物质可以形成一种被称为“尖峰”的局部过密区。在这种尖峰中,预计暗物质在空间上会聚集并且被加速到更高的速度,从而使其湮灭产生的伽马射线信号有可能在背景之上被探测到。我们使用大面积望远镜在10 GeV - 600 GeV能量范围内搜寻来自人马座A周围尖峰中p波湮灭暗物质的伽马射线信号。这样的信号会表现为一个点源,并且会有尖锐的谱线或盒状光谱特征,很难用标准天体物理过程来模拟,这表明其起源于暗物质。我们在这个范围内没有发现显著过量的伽马射线,并对源自银河系中心的伽马射线能段设定了通量上限。这一首次得到的结果,是在人马座A附近暗物质密度的不同模型背景下进行解释的。

相似文献

1
Search for Gamma-ray Emission from p-wave Dark Matter Annihilation in the Galactic Center.
Phys Rev D. 2019 May 15;99(10). doi: 10.1103/PhysRevD.99.103007.
2
Black Hole Window into p-Wave Dark Matter Annihilation.
Phys Rev Lett. 2015 Dec 4;115(23):231302. doi: 10.1103/PhysRevLett.115.231302. Epub 2015 Dec 2.
3
Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?
Phys Rev Lett. 2014 Oct 10;113(15):151302. doi: 10.1103/PhysRevLett.113.151302. Epub 2014 Oct 9.
5
Search for photon-linelike signatures from dark matter annihilations with H.E.S.S.
Phys Rev Lett. 2013 Jan 25;110(4):041301. doi: 10.1103/PhysRevLett.110.041301. Epub 2013 Jan 22.
6
Higgsino Dark Matter Confronts 14 Years of Fermi γ-Ray Data.
Phys Rev Lett. 2023 May 19;130(20):201001. doi: 10.1103/PhysRevLett.130.201001.
7
Galactic center excess in γ rays from annihilation of self-interacting dark matter.
Phys Rev Lett. 2015 May 29;114(21):211303. doi: 10.1103/PhysRevLett.114.211303. Epub 2015 May 27.
8
Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S.
Phys Rev Lett. 2011 Apr 22;106(16):161301. doi: 10.1103/PhysRevLett.106.161301. Epub 2011 Apr 18.
9
Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey.
Phys Rev Lett. 2022 Sep 9;129(11):111101. doi: 10.1103/PhysRevLett.129.111101.
10
Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.
Phys Rev Lett. 2015 Dec 4;115(23):231301. doi: 10.1103/PhysRevLett.115.231301. Epub 2015 Nov 30.

本文引用的文献

1
Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data.
Phys Rev Lett. 2017 May 12;118(19):191101. doi: 10.1103/PhysRevLett.118.191101. Epub 2017 May 9.
2
Black Hole Window into p-Wave Dark Matter Annihilation.
Phys Rev Lett. 2015 Dec 4;115(23):231302. doi: 10.1103/PhysRevLett.115.231302. Epub 2015 Dec 2.
3
Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike?
Phys Rev Lett. 2014 Oct 10;113(15):151302. doi: 10.1103/PhysRevLett.113.151302. Epub 2014 Oct 9.
4
Clumps and streams in the local dark matter distribution.
Nature. 2008 Aug 7;454(7205):735-8. doi: 10.1038/nature07153.
5
Significant gamma lines from inert Higgs dark matter.
Phys Rev Lett. 2007 Jul 27;99(4):041301. doi: 10.1103/PhysRevLett.99.041301.
6
Dark matter profile in the galactic center.
Phys Rev Lett. 2004 Aug 6;93(6):061302. doi: 10.1103/PhysRevLett.93.061302.
7
Evolution of the dark matter distribution at the galactic center.
Phys Rev Lett. 2004 May 21;92(20):201304. doi: 10.1103/PhysRevLett.92.201304. Epub 2004 May 20.
8
On the Cusp around Central Black Holes in Luminous Elliptical Galaxies.
Astrophys J. 1999 Nov 10;525(2):L77-L80. doi: 10.1086/312338.
9
Observable monochromatic photons from cosmic photino annihilation.
Phys Rev D Part Fields. 1988 Jun 15;37(12):3737-3741. doi: 10.1103/physrevd.37.3737.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验