Suppr超能文献

一种基于套索法的多维计算机自适应测试中补充项目的项目-特质模式检测方法。

A LASSO-Based Method for Detecting Item-Trait Patterns of Replenished Items in Multidimensional Computerized Adaptive Testing.

作者信息

Sun Jianan, Ye Ziwen

机构信息

Department of Mathematics, College of Science, Beijing Forestry University, Beijing, China.

出版信息

Front Psychol. 2019 Aug 30;10:1944. doi: 10.3389/fpsyg.2019.01944. eCollection 2019.

Abstract

Multidimensional computerized adaptive testing (MCAT) is one of the widely discussed topics in psychometrics. Within the context of item replenishment in MCAT, it is important to identify the item-trait pattern for each replenished item, which indicates the set of the latent traits that are measured by each replenished item in the item pool. We propose a pattern recognition method based on the least absolute shrinkage and selection operator (LASSO) to detect the optimal item-trait patterns of the replenished items via an MCAT test. Simulation studies are conducted to investigate the performance of the proposed method in pattern recognition accuracy under different conditions across various latent trait correlation, item discrimination, test lengths, and item selection criteria in the test. Results show that the proposed method can accurately and efficiently identify the item-trait patterns of the replenished items in both the two-dimensional and three-dimensional item pools.

摘要

多维计算机自适应测试(MCAT)是心理测量学中广泛讨论的主题之一。在MCAT的项目补充背景下,识别每个补充项目的项目-特质模式很重要,该模式表明了项目库中每个补充项目所测量的潜在特质集。我们提出一种基于最小绝对收缩和选择算子(LASSO)的模式识别方法,通过MCAT测试来检测补充项目的最优项目-特质模式。进行了模拟研究,以考察所提方法在不同条件下,跨越各种潜在特质相关性、项目区分度、测试长度和测试中的项目选择标准时,在模式识别准确性方面的表现。结果表明,所提方法能够准确、高效地识别二维和三维项目库中补充项目的项目-特质模式。

相似文献

1
A LASSO-Based Method for Detecting Item-Trait Patterns of Replenished Items in Multidimensional Computerized Adaptive Testing.
Front Psychol. 2019 Aug 30;10:1944. doi: 10.3389/fpsyg.2019.01944. eCollection 2019.
2
LASSO-Based Pattern Recognition for Replenished Items With Graded Responses in Multidimensional Computerized Adaptive Testing.
Front Psychol. 2022 Jun 17;13:881853. doi: 10.3389/fpsyg.2022.881853. eCollection 2022.
3
Developing new online calibration methods for multidimensional computerized adaptive testing.
Br J Math Stat Psychol. 2017 Feb;70(1):81-117. doi: 10.1111/bmsp.12083.
4
Item Selection Methods in Multidimensional Computerized Adaptive Testing With Polytomously Scored Items.
Appl Psychol Meas. 2018 Nov;42(8):677-694. doi: 10.1177/0146621618762748. Epub 2018 Apr 23.
5
Item selection methods in multidimensional computerized adaptive testing for forced-choice items using Thurstonian IRT model.
Behav Res Methods. 2024 Feb;56(2):600-614. doi: 10.3758/s13428-022-02037-6. Epub 2023 Feb 7.
7
The Optimal Design of Bifactor Multidimensional Computerized Adaptive Testing with Mixed-format Items.
Appl Psychol Meas. 2022 Oct;46(7):605-621. doi: 10.1177/01466216221108382. Epub 2022 Jun 14.
8
Multidimensional Computerized Adaptive Testing Using Non-Compensatory Item Response Theory Models.
Appl Psychol Meas. 2019 Sep;43(6):464-480. doi: 10.1177/0146621618800280. Epub 2018 Oct 26.
9
Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model.
Educ Psychol Meas. 2015 Dec;75(6):954-978. doi: 10.1177/0013164415575147. Epub 2015 Mar 25.
10
Applying multidimensional computerized adaptive testing to the MSQOL-54: a simulation study.
Health Qual Life Outcomes. 2023 Jun 25;21(1):61. doi: 10.1186/s12955-023-02152-8.

引用本文的文献

1
LASSO-Based Pattern Recognition for Replenished Items With Graded Responses in Multidimensional Computerized Adaptive Testing.
Front Psychol. 2022 Jun 17;13:881853. doi: 10.3389/fpsyg.2022.881853. eCollection 2022.

本文引用的文献

1
Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing.
Psychometrika. 2019 Sep;84(3):749-771. doi: 10.1007/s11336-018-9644-7. Epub 2018 Dec 3.
2
TIMSS 2011 Student and Teacher Predictors for Mathematics Achievement Explored and Identified via Elastic Net.
Front Psychol. 2018 Mar 15;9:317. doi: 10.3389/fpsyg.2018.00317. eCollection 2018.
3
Developing new online calibration methods for multidimensional computerized adaptive testing.
Br J Math Stat Psychol. 2017 Feb;70(1):81-117. doi: 10.1111/bmsp.12083.
4
Latent Variable Selection for Multidimensional Item Response Theory Models via [Formula: see text] Regularization.
Psychometrika. 2016 Dec;81(4):921-939. doi: 10.1007/s11336-016-9529-6. Epub 2016 Oct 3.
5
A New Online Calibration Method for Multidimensional Computerized Adaptive Testing.
Psychometrika. 2016 Sep;81(3):674-701. doi: 10.1007/s11336-015-9482-9. Epub 2015 Nov 25.
6
A New Stopping Rule for Computerized Adaptive Testing.
Educ Psychol Meas. 2010 Dec 1;70(6):1-17. doi: 10.1177/0013164410387338.
8
Multidimensional Adaptive Testing with Optimal Design Criteria for Item Selection.
Psychometrika. 2009 Jun;74(2):273-296. doi: 10.1007/s11336-008-9097-5. Epub 2008 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验