Suppr超能文献

针对具有一般缺失数据机制的最大近似条件似然估计器减少偏差

Reducing Bias for Maximum Approximate Conditional Likelihood Estimator with General Missing Data Mechanism.

作者信息

Zhao Jiwei

机构信息

Department of Biostatistics, State University of New York at Buffalo, Buffalo, NY, USA.

出版信息

J Nonparametr Stat. 2017;29(3):577-593. doi: 10.1080/10485252.2017.1339306. Epub 2017 Jun 14.

Abstract

In missing data analysis, the assumption of the missing data mechanism is crucial. Under different assumptions, different statistical methods have to be developed accordingly; however, in reality this kind of assumption is usually unverifiable. Therefore a less stringent, and hence more flexible, assumption is preferred. In this paper, we consider a generally applicable missing data mechanism, which includes various instances in all three scenarios: missing completely at random, missing at random, and missing not at random. Under this general missing data mechanism, we introduce the conditional likelihood and its approximate version as the base for estimating the unknown parameter of interest. Since this approximate conditional likelihood uses the completely observed samples only, it may result in large estimation bias, which could deteriorate the statistical inference and also jeopardize other statistical procedure. To tackle this problem, we propose to use some resampling techniques to reduce the estimation bias. We consider both the Jackknife and the Bootstrap in our paper. We compare their asymptotic biases through a higher order expansion up to ( ). We also derive some results for the mean squared error in terms of estimation accuracy. We conduct comprehensive simulation studies under different situations to illustrate our proposed method. We also apply our method to a prostate cancer data analysis.

摘要

在缺失数据分析中,缺失数据机制的假设至关重要。在不同假设下,必须相应地开发不同的统计方法;然而,在现实中这种假设通常无法验证。因此,更宽松、从而更灵活的假设更受青睐。在本文中,我们考虑一种普遍适用的缺失数据机制,它涵盖了所有三种情形下的各种情况:完全随机缺失、随机缺失和非随机缺失。在这种一般的缺失数据机制下,我们引入条件似然及其近似形式作为估计感兴趣的未知参数的基础。由于这种近似条件似然仅使用完全观测到的样本,可能会导致较大的估计偏差,这可能会使统计推断恶化,也会危及其他统计程序。为了解决这个问题,我们建议使用一些重采样技术来减少估计偏差。我们在本文中考虑了刀切法和自助法。我们通过高达( )的高阶展开来比较它们的渐近偏差。我们还根据估计精度得出了一些关于均方误差的结果。我们在不同情况下进行了全面的模拟研究以说明我们提出的方法。我们还将我们的方法应用于前列腺癌数据分析。

相似文献

1
Reducing Bias for Maximum Approximate Conditional Likelihood Estimator with General Missing Data Mechanism.
J Nonparametr Stat. 2017;29(3):577-593. doi: 10.1080/10485252.2017.1339306. Epub 2017 Jun 14.
3
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.
4
Valid statistical inference methods for a case-control study with missing data.
Stat Methods Med Res. 2018 Apr;27(4):1001-1023. doi: 10.1177/0962280216649619. Epub 2016 May 19.
5
Statistical inference for missing data mechanisms.
Stat Med. 2020 Dec 10;39(28):4325-4333. doi: 10.1002/sim.8727. Epub 2020 Aug 19.
6
Asymptotic bias of normal-distribution-based maximum likelihood estimates of moderation effects with data missing at random.
Br J Math Stat Psychol. 2019 May;72(2):334-354. doi: 10.1111/bmsp.12151. Epub 2018 Nov 25.
9
Point estimation following a two-stage group sequential trial.
Stat Methods Med Res. 2023 Feb;32(2):287-304. doi: 10.1177/09622802221137745. Epub 2022 Nov 16.
10
Estimation After a Group Sequential Trial.
Stat Biosci. 2015 Oct;7(2):187-205. doi: 10.1007/s12561-014-9112-6. Epub 2014 Feb 22.

引用本文的文献

2
Estimators based on Unconventional Likelihoods with Nonignorable Missing Data and its Application to a Children's Mental Health Study.
J Nonparametr Stat. 2019;31(4):911-931. doi: 10.1080/10485252.2019.1664739. Epub 2019 Sep 18.
4
A Comparison of High Dimensional Variable Selection Methods with Missing Covariates in a Prostate Cancer Study.
Commun Stat Case Stud Data Anal Appl. 2018;4(2):82-95. doi: 10.1080/23737484.2018.1521315. Epub 2019 Apr 10.

本文引用的文献

1
Optimal pseudolikelihood estimation in the analysis of multivariate missing data with nonignorable nonresponse.
Biometrika. 2018 Jun;105(2):479-486. doi: 10.1093/biomet/asy007. Epub 2018 Feb 28.
2
The prevention and treatment of missing data in clinical trials.
N Engl J Med. 2012 Oct 4;367(14):1355-60. doi: 10.1056/NEJMsr1203730.
4
Integrative molecular concept modeling of prostate cancer progression.
Nat Genet. 2007 Jan;39(1):41-51. doi: 10.1038/ng1935. Epub 2006 Dec 17.
5
A novel role of myosin VI in human prostate cancer.
Am J Pathol. 2006 Nov;169(5):1843-54. doi: 10.2353/ajpath.2006.060316.
6
The polycomb group protein EZH2 is involved in progression of prostate cancer.
Nature. 2002 Oct 10;419(6907):624-9. doi: 10.1038/nature01075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验