Suppr超能文献

超球面上具有自归一化激活函数的回声状态网络

Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere.

作者信息

Verzelli Pietro, Alippi Cesare, Livi Lorenzo

机构信息

Faculty of Informatics, Università della Svizzera Italiana, Lugano, 69000, Switzerland.

Department of Electronics, Information and bioengineering, Politecnico di Milano, Milan, 20133, Italy.

出版信息

Sci Rep. 2019 Sep 25;9(1):13887. doi: 10.1038/s41598-019-50158-4.

Abstract

Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behavior. Results show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of criticality. Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing hyper-parameters can be studied by considering the memory-nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behavior in phase space characterized by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking.

摘要

在递归神经网络的各种架构中,回声状态网络(ESN)因其简化且成本低廉的训练过程而出现。众所周知,这些网络对超参数的设置很敏感,超参数设置会严重影响其行为。结果表明,它们的性能通常在超参数空间的一个狭窄区域(称为临界边缘)内达到最大化。找到这样一个区域需要以合理的方式在超参数空间中进行搜索:稍微超出该区域的超参数配置可能会产生表现出完全发展的混沌的网络,从而导致不可靠的计算。通过考虑记忆 - 非线性权衡,可以研究优化超参数带来的性能提升,即网络非线性行为的增加会降低其记忆过去输入的能力,反之亦然。在本文中,我们提出了一种回声状态网络模型,该模型消除了对超参数的关键依赖,从而得到可证明不会进入混沌状态的网络,并且同时在相空间中表现出非线性行为,其特征是对过去输入有大量记忆,这与线性网络相当。我们的理论发现得到了实验的支持,实验表明所提出的模型展示出足够丰富的动态特性,能够近似许多用于基准测试的常见非线性系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fe/6761167/2d1ff9e2bebc/41598_2019_50158_Fig1_HTML.jpg

相似文献

1
Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere.
Sci Rep. 2019 Sep 25;9(1):13887. doi: 10.1038/s41598-019-50158-4.
2
Determination of the Edge of Criticality in Echo State Networks Through Fisher Information Maximization.
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):706-717. doi: 10.1109/TNNLS.2016.2644268. Epub 2017 Jan 16.
3
Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
Neural Netw. 2021 Oct;142:252-268. doi: 10.1016/j.neunet.2021.05.004. Epub 2021 May 14.
4
Edge of Stability Echo State Network.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7555-7564. doi: 10.1109/TNNLS.2024.3400045. Epub 2025 Apr 4.
5
Computational analysis of memory capacity in echo state networks.
Neural Netw. 2016 Nov;83:109-120. doi: 10.1016/j.neunet.2016.07.012. Epub 2016 Aug 16.
6
Information processing in echo state networks at the edge of chaos.
Theory Biosci. 2012 Sep;131(3):205-13. doi: 10.1007/s12064-011-0146-8. Epub 2011 Dec 7.
7
Real-time computation at the edge of chaos in recurrent neural networks.
Neural Comput. 2004 Jul;16(7):1413-36. doi: 10.1162/089976604323057443.
9
Time series classification with Echo Memory Networks.
Neural Netw. 2019 Sep;117:225-239. doi: 10.1016/j.neunet.2019.05.008. Epub 2019 May 28.
10
Recurrent kernel machines: computing with infinite echo state networks.
Neural Comput. 2012 Jan;24(1):104-33. doi: 10.1162/NECO_a_00200. Epub 2011 Aug 18.

引用本文的文献

1
Interpretable Design of Reservoir Computing Networks Using Realization Theory.
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):6379-6389. doi: 10.1109/TNNLS.2021.3136495. Epub 2023 Sep 1.

本文引用的文献

1
Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series.
IEEE Trans Neural Netw Learn Syst. 2021 May;32(5):2169-2179. doi: 10.1109/TNNLS.2020.3001377. Epub 2021 May 3.
3
Kafnets: Kernel-based non-parametric activation functions for neural networks.
Neural Netw. 2019 Feb;110:19-32. doi: 10.1016/j.neunet.2018.11.002. Epub 2018 Nov 13.
4
Echo state networks are universal.
Neural Netw. 2018 Dec;108:495-508. doi: 10.1016/j.neunet.2018.08.025. Epub 2018 Sep 20.
5
Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.
Phys Rev Lett. 2018 Jan 12;120(2):024102. doi: 10.1103/PhysRevLett.120.024102.
6
Difference between memory and prediction in linear recurrent networks.
Phys Rev E. 2017 Sep;96(3-1):032308. doi: 10.1103/PhysRevE.96.032308. Epub 2017 Sep 11.
8
Reservoir Computing Beyond Memory-Nonlinearity Trade-off.
Sci Rep. 2017 Aug 31;7(1):10199. doi: 10.1038/s41598-017-10257-6.
9
Local Dynamics in Trained Recurrent Neural Networks.
Phys Rev Lett. 2017 Jun 23;118(25):258101. doi: 10.1103/PhysRevLett.118.258101.
10
Determination of the Edge of Criticality in Echo State Networks Through Fisher Information Maximization.
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):706-717. doi: 10.1109/TNNLS.2016.2644268. Epub 2017 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验