Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
Department of Electronic Engineering, University of York, York, United Kingdom.
Front Immunol. 2019 Sep 12;10:2150. doi: 10.3389/fimmu.2019.02150. eCollection 2019.
Novel adjuvant technologies have a key role in the development of next-generation vaccines, due to their capacity to modulate the duration, strength and quality of the immune response. The AS01 adjuvant is used in the malaria vaccine RTS,S/AS01 and in the licensed herpes-zoster vaccine (Shingrix) where the vaccine has proven its ability to generate protective responses with both robust humoral and T-cell responses. For many years, animal models have provided insights into adjuvant mode-of-action (MoA), generally through investigating individual genes or proteins. Furthermore, modeling and simulation techniques can be utilized to integrate a variety of different data types; ranging from serum biomarkers to large scale "omics" datasets. In this perspective we present a framework to create a holistic integration of pre-clinical datasets and immunological literature in order to develop an evidence-based hypothesis of AS01 adjuvant MoA, creating a unified view of multiple experiments. Furthermore, we highlight how holistic systems-knowledge can serve as a basis for the construction of models and simulations supporting exploration of key questions surrounding adjuvant MoA. Using the Systems-Biology-Graphical-Notation, a tool for graphical representation of biological processes, we have captured high-level cellular behaviors and interactions, and cytokine dynamics during the early immune response, which are substantiated by a series of diagrams detailing cellular dynamics. Through explicitly describing AS01 MoA we have built a consensus of understanding across multiple experiments, and so we present a framework to integrate modeling approaches into exploring adjuvant MoA, in order to guide experimental design, interpret results and inform rational design of vaccines.
新型佐剂技术在下一代疫苗的开发中具有关键作用,因为它们能够调节免疫反应的持续时间、强度和质量。AS01 佐剂用于疟疾疫苗 RTS,S/AS01 和已获得许可的带状疱疹疫苗(Shingrix)中,该疫苗已证明其具有产生保护性应答的能力,包括强大的体液和 T 细胞应答。多年来,动物模型为佐剂作用机制(MoA)提供了深入的了解,通常是通过研究单个基因或蛋白质。此外,建模和模拟技术可用于整合各种不同的数据类型;从血清生物标志物到大规模“组学”数据集。在本观点中,我们提出了一个框架,以创建临床前数据集和免疫学文献的整体整合,以便为 AS01 佐剂 MoA 开发基于证据的假设,从而对多个实验形成统一的看法。此外,我们强调了整体系统知识如何可以作为构建支持探索佐剂 MoA 关键问题的模型和模拟的基础。我们使用系统生物学图形符号,这是一种用于表示生物过程的图形表示工具,捕捉了早期免疫反应中的高级细胞行为和相互作用以及细胞因子动力学,并通过详细描述细胞动力学的一系列图表加以证实。通过明确描述 AS01 MoA,我们在多个实验之间建立了共识,因此我们提出了一个整合建模方法来探索佐剂 MoA 的框架,以指导实验设计、解释结果并为疫苗的合理设计提供信息。