Cao Duanyun, Song Yizhi, Peng Jinbo, Ma Runze, Guo Jing, Chen Ji, Li Xinzheng, Jiang Ying, Wang Enge, Xu Limei
International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
Institute of Experimental and Applied Physics, University of Regensburg, Regensburg, Germany.
Front Chem. 2019 Sep 12;7:626. doi: 10.3389/fchem.2019.00626. eCollection 2019.
The structure and dynamics of interfacial water, determined by the water-interface interactions, are important for a wide range of applied fields and natural processes, such as water diffusion (Kim et al., 2013), electrochemistry (Markovic, 2013), heterogeneous catalysis (Over et al., 2000), and lubrication (Zilibotti et al., 2013). The precise understanding of water-interface interactions largely relies on the development of atomic-scale experimental techniques (Guo et al., 2014) and computational methods (Hapala et al., 2014b). Scanning probe microscopy has been extensively applied to probe interfacial water in many interdisciplinary fields (Ichii et al., 2012; Shiotari and Sugimoto, 2017; Peng et al., 2018a). In this perspective, we review the recent progress in the noncontact atomic force microscopy (nc-AFM) imaging and AFM simulation techniques and discuss how the newly developed techniques are applied to study the properties of interfacial water. The nc-AFM with the quadrupole-like CO-terminated tip can achieve ultrahigh-resolution imaging of the interfacial water on different surfaces, trace the reconstruction of H-bonding network and determine the intrinsic structures of the weakly bonded water clusters and even their metastable states. In the end, we present an outlook on the directions of future AFM studies of interfacial water as well as the challenges faced by this field.
由水与界面的相互作用所决定的界面水的结构和动力学,对于广泛的应用领域和自然过程都很重要,比如水扩散(Kim等人,2013年)、电化学(Markovic,2013年)、多相催化(Over等人,2000年)以及润滑(Zilibotti等人,2013年)。对水与界面相互作用的精确理解在很大程度上依赖于原子尺度实验技术(Guo等人,2014年)和计算方法(Hapala等人,2014b)的发展。扫描探针显微镜已被广泛应用于许多跨学科领域来探测界面水(Ichii等人,2012年;Shiotari和Sugimoto,2017年;Peng等人,2018a)。从这个角度出发,我们回顾了非接触原子力显微镜(nc-AFM)成像和AFM模拟技术的最新进展,并讨论了这些新开发的技术如何被用于研究界面水的性质。具有类似四极杆的CO端终止探针的nc-AFM能够实现对不同表面上界面水的超高分辨率成像,追踪氢键网络的重构,并确定弱键合水团簇的固有结构甚至它们的亚稳态。最后,我们对未来AFM研究界面水的方向以及该领域所面临的挑战进行了展望。