Department of Physics, Yale University, New Haven, Connecticut 06520, USA.
Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.
Phys Rev Lett. 2019 Sep 13;123(11):117201. doi: 10.1103/PhysRevLett.123.117201.
Through a combination of experimental measurements and theoretical modeling, we describe a strongly orbital-polarized insulating ground state in an (LaTiO_{3}){2}/(LaCoO{3})_{2} oxide heterostructure. X-ray absorption spectra and ab initio calculations show that an electron is transferred from the titanate to the cobaltate layers. The charge transfer, accompanied by a large octahedral distortion, induces a substantial orbital polarization in the cobaltate layer of a size unattainable via epitaxial strain alone. The asymmetry between in-plane and out-of-plane orbital occupancies in the high-spin cobaltate layer is predicted by theory and observed through x-ray linear dichroism experiments. Manipulating orbital configurations using interfacial coupling within heterostructures promises exciting ground-state engineering for realizing new emergent electronic phases in metal oxide superlattices.
通过实验测量和理论建模的结合,我们在(LaTiO_{3}){2}/(LaCoO{3})_{2} 氧化物异质结构中描述了一种强烈的轨道极化绝缘基态。X 射线吸收光谱和第一性原理计算表明,电子从钛酸盐转移到钴酸盐层。电荷转移伴随着八面体的剧烈变形,导致钴酸盐层中产生了很大的轨道极化,这种极化的大小是仅通过外延应变无法实现的。理论预测并通过 X 射线线性二色性实验观察到高自旋钴酸盐层中面内和面外轨道占据的不对称性。通过异质结构中的界面耦合来操纵轨道构型有望为实现金属氧化物超晶格中的新涌现电子相提供令人兴奋的基态工程。