Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev Lett. 2019 Sep 6;123(10):103202. doi: 10.1103/PhysRevLett.123.103202.
We propose and explore an all-optical technique for ultrafast characterization of electronic ring currents in atoms and molecules, based on high-harmonic generation (HHG). In our approach, a medium is irradiated by an intense reflection-symmetric laser pulse that leads to HHG, where the polarization of the emitted harmonics is strictly linear if the medium is reflection invariant (e.g., randomly oriented atomic or molecular media). The presence of a ring current in the medium breaks this symmetry, causing the emission of elliptically polarized harmonics, where the harmonics' polarization directly maps the ring current, and the signal is background-free. Scanning the delay between the current excitation and the HHG driving pulse provides an attosecond time-resolved signal for the multielectron dynamics in the excited current (including electron-electron interactions). We analyze the responsible physical mechanism and derive the analytic dependence of the HHG emission on the ring current. The method is numerically demonstrated using quantum models for neon and benzene, as well as through ab initio calculations.
我们提出并探索了一种基于高次谐波产生(HHG)的超快原子和分子中电子环电流特性的全光学技术。在我们的方法中,介质被强反射对称激光脉冲照射,导致 HHG,如果介质是反射不变的(例如,随机取向的原子或分子介质),则发射的谐波的偏振严格是线性的。介质中的环电流打破了这种对称性,导致椭圆偏振谐波的发射,其中谐波的偏振直接映射环电流,并且信号无背景。扫描电流激发和 HHG 驱动脉冲之间的延迟时间提供了激发电流中多电子动力学的阿秒时间分辨信号(包括电子-电子相互作用)。我们分析了负责的物理机制,并推导出 HHG 发射对环电流的解析依赖性。该方法使用氖和苯的量子模型以及从头算计算进行了数值演示。