Suppr超能文献

活性奥恩斯坦-乌伦贝克粒子。

Active Ornstein-Uhlenbeck particles.

机构信息

G. Millán Institute for Fluid Dynamics, Nanoscience & Industrial Mathematics, and Department of Materials Science & Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain and Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York 10012, USA.

出版信息

Phys Rev E. 2019 Aug;100(2-1):022601. doi: 10.1103/PhysRevE.100.022601.

Abstract

Active Ornstein-Uhlenbeck particles (AOUPs) are overdamped particles in an interaction potential subject to external Ornstein-Uhlenbeck noises. They can be transformed into a system of underdamped particles under additional velocity dependent forces and subject to white noise forces. There has been some discussion in the literature on whether AOUPs can be in equilibrium for particular interaction potentials and how far from equilibrium they are in the limit of small persistence time. By using a theorem on the time reversed form of the AOUP Langevin-Ito equations, I prove that they have an equilibrium probability density invariant under time reversal if and only if their smooth interaction potential has zero third derivatives. In the limit of small persistence Ornstein-Uhlenbeck time τ, a Chapman-Enskog expansion of the Fokker-Planck equation shows that the probability density has a local equilibrium solution in the particle momenta modulated by a reduced probability density that varies slowly with the position. The reduced probability density satisfies a continuity equation in which the probability current has an asymptotic expansion in powers of τ. Keeping up to O(τ) terms, this equation is a diffusion equation, which has an equilibrium stationary solution with zero current. However, O(τ^{2}) terms contain fifth- and sixth-order spatial derivatives and the continuity equation no longer has a zero current stationary solution. The expansion of the overall stationary solution now contains odd terms in the momenta, which clearly shows that it is not an equilibrium.

摘要

主动奥恩斯坦-乌伦贝克粒子(AOUP)是处于相互作用势能中的过阻尼粒子,同时受到外部奥恩斯坦-乌伦贝克噪声的影响。在附加速度相关力和服从白噪声力的条件下,它们可以转换为欠阻尼粒子系统。文献中讨论了特定相互作用势能下的 AOUP 是否可以处于平衡状态,以及在小持续时间极限下它们离平衡状态有多远。通过使用关于 AOUP Langevin-Ito 方程时间反演形式的一个定理,我证明了如果它们的平滑相互作用势能具有零三阶导数,那么它们具有时间反转不变的平衡概率密度。在小持续奥恩斯坦-乌伦贝克时间 τ 的极限下,福克-普朗克方程的Chapman-Enskog 展开表明,在粒子动量调制的局部平衡解中,概率密度具有一个随位置缓慢变化的简化概率密度。简化概率密度满足连续性方程,其中概率流具有 τ 的幂次的渐近展开。保持到 O(τ)项,这个方程是一个扩散方程,它具有零电流的平衡稳定解。然而,O(τ^{2})项包含第五和第六阶空间导数,连续性方程不再具有零电流稳定解。整体稳定解的展开现在包含动量中的奇数项,这清楚地表明它不是平衡的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验