Suppr超能文献

超声作为研究运动过程中肌肉-肌腱功能的工具:应用的系统评价。

Ultrasound as a Tool to Study Muscle-Tendon Functions during Locomotion: A Systematic Review of Applications.

机构信息

Institute of Health Care Engineering with European Testing Center of Medical Devices, Graz University of Technology, Stremayrgasse 16/II, 8010 Graz, Austria.

Institute of Sport Science, University of Graz, Mozartgasse 14, 8010 Graz, Austria.

出版信息

Sensors (Basel). 2019 Oct 5;19(19):4316. doi: 10.3390/s19194316.

Abstract

Movement science investigating muscle and tendon functions during locomotion utilizes commercial ultrasound imagers built for medical applications. These limit biomechanics research due to their form factor, range of view, and spatio-temporal resolution. This review systematically investigates the technical aspects of applying ultrasound as a research tool to investigate human and animal locomotion. It provides an overview on the ultrasound systems used and of their operating parameters. We present measured fascicle velocities and discuss the results with respect to operating frame rates during recording. Furthermore, we derive why muscle and tendon functions should be recorded with a frame rate of at least 150 Hz and a range of view of 250 mm. Moreover, we analyze why and how the development of better ultrasound observation devices at the hierarchical level of muscles and tendons can support biomechanics research. Additionally, we present recent technological advances and their possible application. We provide a list of recommendations for the development of a more advanced ultrasound sensor system class targeting biomechanical applications. Looking to the future, mobile, ultrafast ultrasound hardware technologies create immense opportunities to expand the existing knowledge of human and animal movement.

摘要

运动科学在研究运动中的肌肉和肌腱功能时,使用专为医学应用而设计的商用超声成像仪。由于其外形、视野范围和时空分辨率的限制,这些成像仪限制了生物力学研究的发展。本综述系统地研究了将超声作为研究工具应用于研究人类和动物运动的技术方面。它概述了所使用的超声系统及其操作参数。我们展示了肌束速度的测量值,并根据记录过程中的工作帧率讨论了结果。此外,我们还推导出了为什么肌肉和肌腱功能的记录需要至少 150 Hz 的帧率和 250mm 的视野范围。此外,我们还分析了为什么以及如何在肌肉和肌腱的层次上开发更好的超声观察设备可以支持生物力学研究。此外,我们还介绍了最新的技术进步及其可能的应用。我们为开发更先进的、针对生物力学应用的超声传感器系统类别提供了一系列建议。展望未来,移动、超快速的超声硬件技术为扩展人类和动物运动的现有知识创造了巨大的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a090/6806279/0bba616002ba/sensors-19-04316-g0A1.jpg

相似文献

2
The use of ultrasound to study muscle-tendon function in human posture and locomotion.
Gait Posture. 2013 Mar;37(3):305-12. doi: 10.1016/j.gaitpost.2012.07.024. Epub 2012 Aug 19.
3
Interaction between gastrocnemius medialis fascicle and Achilles tendon compliance: a new insight on the quick-release method.
J Appl Physiol (1985). 2014 Feb 1;116(3):259-66. doi: 10.1152/japplphysiol.00309.2013. Epub 2013 Dec 5.
4
Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing.
Scand J Med Sci Sports. 2019 Jan;29(1):55-70. doi: 10.1111/sms.13308. Epub 2018 Oct 15.
5
Shortening behavior of the different components of muscle-tendon unit during isokinetic plantar flexions.
J Appl Physiol (1985). 2013 Oct 1;115(7):1015-24. doi: 10.1152/japplphysiol.00247.2013. Epub 2013 Jul 25.
6
In vivo behavior of the human soleus muscle with increasing walking and running speeds.
J Appl Physiol (1985). 2015 May 15;118(10):1266-75. doi: 10.1152/japplphysiol.00128.2015. Epub 2015 Mar 26.
8
Automatic tracking of medial gastrocnemius fascicle length during human locomotion.
J Appl Physiol (1985). 2011 Nov;111(5):1491-6. doi: 10.1152/japplphysiol.00530.2011. Epub 2011 Aug 11.
9
In vivo maximal fascicle-shortening velocity during plantar flexion in humans.
J Appl Physiol (1985). 2015 Dec 1;119(11):1262-71. doi: 10.1152/japplphysiol.00542.2015. Epub 2015 Oct 1.
10
The slack test does not assess maximal shortening velocity of muscle fascicles in humans.
J Exp Biol. 2018 Aug 10;221(Pt 15):jeb169623. doi: 10.1242/jeb.169623.

引用本文的文献

3
Techniques for In Vivo Measurement of Ligament and Tendon Strain: A Review.
Ann Biomed Eng. 2021 Jan;49(1):7-28. doi: 10.1007/s10439-020-02635-5. Epub 2020 Oct 6.
4
Imaging and Simulation of Inter-muscular Differences in Triceps Surae Contributions to Forward Propulsion During Walking.
Ann Biomed Eng. 2021 Feb;49(2):703-715. doi: 10.1007/s10439-020-02594-x. Epub 2020 Sep 8.

本文引用的文献

1
Forefoot running requires shorter gastrocnemius fascicle length than rearfoot running.
J Sports Sci. 2019 Sep;37(17):1972-1980. doi: 10.1080/02640414.2019.1610146. Epub 2019 Apr 29.
2
The effects of backpack carriage on gait kinematics and kinetics of schoolchildren.
Sci Rep. 2019 Mar 4;9(1):3364. doi: 10.1038/s41598-019-40076-w.
3
Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running.
J Appl Physiol (1985). 2019 Mar 1;126(3):708-716. doi: 10.1152/japplphysiol.00768.2018. Epub 2019 Jan 10.
4
The mysteries of eccentric muscle action.
J Sport Health Sci. 2018 Jul;7(3):253-254. doi: 10.1016/j.jshs.2018.05.006. Epub 2018 Jun 12.
5
OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223. doi: 10.1371/journal.pcbi.1006223. eCollection 2018 Jul.
6
Ultrasound Open Platforms for Next-Generation Imaging Technique Development.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1078-1092. doi: 10.1109/TUFFC.2018.2844560.
8
Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.
Scand J Med Sci Sports. 2018 Jul;28(7):1828-1836. doi: 10.1111/sms.13089. Epub 2018 Apr 23.
9
Operating length and velocity of human vastus lateralis muscle during walking and running.
Sci Rep. 2018 Mar 22;8(1):5066. doi: 10.1038/s41598-018-23376-5.
10
Muscle-tendon length and force affect human tibialis anterior central aponeurosis stiffness in vivo.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3097-E3105. doi: 10.1073/pnas.1712697115. Epub 2018 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验