Bettini Simone, Lazzari Maurizio, Franceschini Valeria
Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
Results Probl Cell Differ. 2019;68:355-377. doi: 10.1007/978-3-030-23459-1_15.
The knowledge of the morphological and functional aspects of mammalian glial cells has greatly increased in the last few decades. Glial cells represent the most diffused cell type in the central nervous system, and they play a critical role in the development and function of the brain. Glial cell dysfunction has recently been shown to contribute to various neurological disorders, such as autism, schizophrenia, pain, and neurodegeneration. For this reason, glia constitutes an interesting area of research because of its clinical, diagnostic, and pharmacological relapses. In this chapter, we present and discuss the cytoarchitecture of glial cells in tetrapods from an evolutive perspective. GFAP and vimentin are main components of the intermediate filaments of glial cells and are used as cytoskeletal molecular markers because of their high degree of conservation in the various vertebrate groups. In the anamniotic tetrapods and their progenitors, Rhipidistia (Dipnoi are the only extant rhipidistian fish), the cytoskeletal markers show a model based exclusively on radial glial cells. In the transition from primitive vertebrates to successively evolved forms, the emergence of a new model has been observed which is believed to support the most complex functional aspects of the nervous system in the vertebrates. In reptiles, radial glial cells are prevalent, but star-shaped astrocytes begin to appear in the midbrain. In endothermic amniotes (birds and mammals), star-shaped astrocytes are predominant. In glial cells, vimentin is indicative of immature cells, while GFAP indicates mature ones.Olfactory receptor neurons undergo continuous turnover, so they are an easy model for neurogenesis studies. Moreover, they are useful in neurotoxicity studies because of the exposed position of their apical pole to the external environment. Among vertebrates, fish represent a valid biological model in this field. In particular, zebrafish, already used in laboratories for embryological, neurobiological, genetic, and pathophysiological studies, is the reference organism in olfactory system research. Smell plays an important role in the reproductive behavior of fish, with direct influences also on the numerical consistency of their populations. Taking into account that a lot of species have considerable economic importance, it is necessary to verify if the model of zebrafish olfactory organ is also directly applicable to other fish. In this chapter, we focus on crypt cells, a morphological type of olfactory cells specific of fish. We describe hypothetical function (probably related with social behavior) and evolutive position of these cells (prior to the appearance of the vomeronasal organ in tetrapods). We also offer the first comparison of the molecular characteristics of these receptors between zebrafish and the guppy. Interestingly, the immunohistochemical expression patterns of known crypt cell markers are not overlapping in the two species.
在过去几十年里,人们对哺乳动物神经胶质细胞的形态和功能方面的认识有了极大的提高。神经胶质细胞是中枢神经系统中分布最广泛的细胞类型,它们在大脑的发育和功能中起着关键作用。最近的研究表明,神经胶质细胞功能障碍与各种神经系统疾病有关,如自闭症、精神分裂症、疼痛和神经退行性变。因此,由于其临床、诊断和药理学方面的复发情况,神经胶质细胞构成了一个有趣的研究领域。在本章中,我们从进化的角度介绍并讨论四足动物神经胶质细胞的细胞结构。胶质纤维酸性蛋白(GFAP)和波形蛋白是神经胶质细胞中间丝的主要成分,由于它们在不同脊椎动物群体中具有高度的保守性,因此被用作细胞骨架分子标记。在无羊膜四足动物及其祖先扇鳍鱼类(肺鱼是现存唯一的扇鳍鱼类)中,细胞骨架标记显示出一种仅基于放射状胶质细胞的模式。从原始脊椎动物到逐渐进化的形式的转变过程中,人们观察到一种新的模式出现,据信这种模式支持脊椎动物神经系统最复杂的功能方面。在爬行动物中,放射状胶质细胞很普遍,但星形胶质细胞开始出现在中脑。在恒温羊膜动物(鸟类和哺乳动物)中,星形胶质细胞占主导地位。在神经胶质细胞中,波形蛋白表明细胞未成熟,而GFAP表明细胞成熟。嗅觉受体神经元不断更新,因此它们是神经发生研究的一个简单模型。此外,由于它们的顶端极暴露于外部环境,它们在神经毒性研究中也很有用。在脊椎动物中,鱼类是该领域一个有效的生物学模型。特别是斑马鱼,已经在实验室用于胚胎学、神经生物学、遗传学和病理生理学研究,是嗅觉系统研究的参考生物。嗅觉在鱼类的生殖行为中起着重要作用,也直接影响其种群数量的一致性。考虑到许多物种具有相当重要的经济意义,有必要验证斑马鱼嗅觉器官模型是否也直接适用于其他鱼类。在本章中,我们重点关注隐窝细胞,这是鱼类特有的一种嗅觉细胞形态类型。我们描述了这些细胞的假设功能(可能与社会行为有关)及其进化位置(在四足动物犁鼻器出现之前)。我们还首次比较了斑马鱼和孔雀鱼这些受体的分子特征。有趣的是,已知隐窝细胞标记物的免疫组织化学表达模式在这两个物种中并不重叠。