Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia; Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt.
Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.
Plant Physiol Biochem. 2019 Nov;144:300-311. doi: 10.1016/j.plaphy.2019.10.006. Epub 2019 Oct 4.
To overcome the salinity threats to crop production in arid conditions, wheat cultivars should be developed with better performance with regard to key physiological traits. Although different chlorophyll fluorescence (ChlF) parameters, such as maximum quantum PSII photochemical efficiency (Fv/Fm), quantum yield of PSII (Φ), and non-photochemical quenching (NPQ) have been proven to be key physiological traits to improve salt tolerance, their evaluation is time-consuming. In this study, hyperspectral canopy reflectance was used to assess ChlF parameters and grain yield (GY) of two wheat cultivars growing in simulated saline field conditions and exposed to three salinity levels (control, 6.0 dS m, and 12.0 dS m). Different spectral reflectance indices (SRIs) were formulated as ratios based on contour maps and tested for their relationship with ChlF parameters. The performance of individual SRIs and partial least squares regression (PLSR) models based on ChlF parameters, all examined SRIs, or data fusion of combined ChlF and SRIs to estimate the GY was considered. All examined SRIs failed to assess Φ and NPQ under control condition, but most of them showed a moderate to strong relationship with both parameters under the salinity levels of 6.0 and 12.0 dS m. The examined SRIs showed a moderate and strong relationship with Fv/Fm under conditions of 6.0 and 12.0 dS m, respectively. Most SRIs correlated better with the three ChlF parameters for the salt-sensitive cultivar Sakha 61 than for the salt-tolerant cultivar Sakha 93. Several SRIs exhibited strong relationships with GY under the salinity levels of 6.0 and 12.0 dS m and for both cultivars. Overall, the PLSR models exhibited additional improvements for estimating and predicting GY in both calibration and validation datasets over that using individual SRIs. The PLSR model based on data fusion was the best model to accurately estimate GY in the validation model even under control conditions. This study, of a type rarely conducted in simulated saline field conditions, indicates that the ChlF parameters could be linked to hyperspectral reflectance data for the rapid and non-destructive assessment of photosynthetic status and prediction of wheat production under salt stress field conditions.
为了克服干旱条件下作物生产的盐度威胁,应该开发具有更好的关键生理特性的小麦品种。虽然不同的叶绿素荧光(ChlF)参数,如最大量子 PSII 光化学效率(Fv/Fm)、PSII 的量子产量(Φ)和非光化学猝灭(NPQ)已被证明是提高耐盐性的关键生理特性,但它们的评估是耗时的。在这项研究中,使用高光谱冠层反射率来评估在模拟盐渍田间条件下生长并暴露于三种盐度水平(对照、6.0 dS m 和 12.0 dS m)的两个小麦品种的 ChlF 参数和籽粒产量(GY)。基于等高线图制定了不同的光谱反射率指数(SRIs),并测试了它们与 ChlF 参数的关系。考虑了基于 ChlF 参数、所有检查的 SRIs 或结合 ChlF 和 SRIs 的组合数据融合的个体 SRIs 和偏最小二乘回归(PLSR)模型的性能,以估计 GY。在对照条件下,所有检查的 SRIs 都无法评估 Φ 和 NPQ,但在 6.0 和 12.0 dS m 的盐度水平下,它们大多数与这两个参数都表现出中度到强的关系。在 6.0 和 12.0 dS m 条件下,检查的 SRIs 与 Fv/Fm 呈中度和强关系。对于盐敏感品种 Sakha 61,大多数 SRIs 与三种 ChlF 参数的相关性优于盐耐受品种 Sakha 93。在 6.0 和 12.0 dS m 的盐度水平以及两个品种下,几个 SRIs 与 GY 呈强相关。总体而言,与单独使用 SRIs 相比,PLSR 模型在两个校准和验证数据集的 GY 估计和预测方面表现出了额外的改进。即使在对照条件下,基于数据融合的 PLSR 模型也是准确估计验证模型中 GY 的最佳模型。这项在模拟盐渍田间条件下很少进行的研究表明,ChlF 参数可以与高光谱反射率数据相关联,用于快速、无损地评估光合作用状态,并预测盐胁迫田间条件下的小麦产量。