Suppr超能文献

仿生机翼适应性:理论模型的下一步。

Bioinspired aerofoil adaptations: the next steps for theoretical models.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190070. doi: 10.1098/rsta.2019.0070. Epub 2019 Oct 14.

Abstract

The extended introduction in this paper reviews the theoretical modelling of leading- and trailing-edge noise, various bioinspired aerofoil adaptations to both the leading and trailing edges of blades, and how these adaptations aid in the reduction of aerofoil-turbulence interaction noise. Attention is given to the agreement between current theoretical predictions and experimental measurements, in particular, for turbulent interactions at the trailing edge of an aerofoil. Where there is a poor agreement between theoretical models and experimental data the features neglected from the theoretical models are discussed. Notably, it is known that theoretical predictions for porous trailing-edge adaptations do not agree well with experimental measurements. Previous works propose the reason for this: theoretical models do not account for surface roughness due to the porous material and thus omit a key noise source. The remainder of this paper, therefore, presents an analytical model, based upon the acoustic analogy, to predict the far-field noise due to a rough surface at the trailing edge of an aerofoil. Unlike previous roughness noise models which focus on roughness over an infinite wall, the model presented here includes diffraction by a sharp edge. The new results are seen to be in better agreement with experimental data than previous models which neglect diffraction by an edge. This new model could then be used to improve theoretical predictions for far-field noise generated by turbulent interactions with a (rough) porous trailing edge. This article is part of the theme issue 'Frontiers of aeroacoustics research: theory, computation and experiment'.

摘要

本文的扩展介绍回顾了前缘和后缘噪声的理论建模、各种仿生机翼对叶片前缘和后缘的适应以及这些适应如何有助于减少机翼-湍流相互作用噪声。本文特别关注当前理论预测与实验测量之间的一致性,特别是对于机翼后缘的湍流相互作用。在理论模型和实验数据之间存在较差的一致性的情况下,讨论了理论模型中忽略的特征。值得注意的是,众所周知,对于多孔后缘适应的理论预测与实验测量不一致。先前的工作提出了原因:理论模型没有考虑到多孔材料引起的表面粗糙度,从而忽略了一个关键的噪声源。因此,本文的其余部分提出了一种基于声学类比的分析模型,以预测机翼后缘粗糙表面产生的远场噪声。与以前关注无限壁上粗糙度的粗糙度噪声模型不同,这里提出的模型包括锐缘的衍射。与忽略边缘衍射的先前模型相比,新结果与实验数据更吻合。该新模型随后可用于改进由(粗糙)多孔后缘与湍流相互作用产生的远场噪声的理论预测。本文是主题为“航空声学研究前沿:理论、计算和实验”的一部分。

相似文献

1
Bioinspired aerofoil adaptations: the next steps for theoretical models.
Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190070. doi: 10.1098/rsta.2019.0070. Epub 2019 Oct 14.
2
Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls.
Bioinspir Biomim. 2019 Dec 4;15(1):016009. doi: 10.1088/1748-3190/ab529e.
4
The steady aerodynamics of aerofoils with porosity gradients.
Proc Math Phys Eng Sci. 2017 Sep;473(2205):20170266. doi: 10.1098/rspa.2017.0266. Epub 2017 Sep 27.
5
Trailing-edge far-field noise and noise source characterization in high inflow turbulence conditions.
J Acoust Soc Am. 2024 Feb 1;155(2):803-816. doi: 10.1121/10.0024611.
6
Broadband trailing edge noise from a sharp-edged strut.
J Acoust Soc Am. 2011 May;129(5):2820-9. doi: 10.1121/1.3569698.
8
Anisotropic source modelling for turbulent jet noise prediction.
Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190075. doi: 10.1098/rsta.2019.0075. Epub 2019 Oct 14.
9
The effect of leading edge porosity on airfoil turbulence interaction noise.
J Acoust Soc Am. 2022 Sep;152(3):1437. doi: 10.1121/10.0013703.
10
Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.
J Acoust Soc Am. 2016 Aug;140(2):1361. doi: 10.1121/1.4961362.

引用本文的文献

1
Advances in aeroacoustics research: recent developments and perspectives.
Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190390. doi: 10.1098/rsta.2019.0390. Epub 2019 Oct 14.

本文引用的文献

1
Sound from aeroelastic vortex-fibre interactions.
Philos Trans A Math Phys Eng Sci. 2019 Dec 2;377(2159):20190071. doi: 10.1098/rsta.2019.0071. Epub 2019 Oct 14.
2
Numerical solution of acoustic scattering by finite perforated elastic plates.
Proc Math Phys Eng Sci. 2016 Apr;472(2188):20150767. doi: 10.1098/rspa.2015.0767.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验