Shi Ran, Long Run
College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China.
J Phys Chem Lett. 2019 Nov 7;10(21):6604-6612. doi: 10.1021/acs.jpclett.9b02786. Epub 2019 Oct 15.
Using time domain density functional theory combined with nonadiabatic molecular dynamics, we demonstrate that the Sn dopants favor forming localized hole states with different extent at low and high doping concentrations, mimicking the small and large polarons, while retain the electron wave functions comparable with the pristine system, leading to nonadiabatic coupling decreasing by a factor of 45% and 38% and bandgap reduction by 0.04 and 0.27 eV, respectively. Furthermore, replacing heavier Pb with lighter Sn increases atomic fluctuations and accelerates loss of quantum coherence, in particular even faster at higher Sn doping concentration. As a result, the interplay among the bandgap, NA coupling, and decoherence time delays the electron-hole recombination by a factor of 3.5 and 1.3 at low and high doping concentration. Our study reveals the atomistic mechanisms of suppressed recombination dependence on Sn doping concentration, providing a new way to design high performance mixed perovskites.
结合时域密度泛函理论和非绝热分子动力学,我们证明,锡掺杂剂在低掺杂浓度和高掺杂浓度下倾向于形成不同程度的局域空穴态,分别模拟小极化子和大极化子,同时保留与原始体系相当的电子波函数,导致非绝热耦合分别降低45%和38%,带隙分别减小0.04和0.27电子伏特。此外,用较轻的锡取代较重的铅会增加原子涨落并加速量子相干性的丧失,尤其是在较高的锡掺杂浓度下更快。结果,带隙、非绝热耦合和退相干时间之间的相互作用在低掺杂浓度和高掺杂浓度下分别将电子-空穴复合延迟了3.5倍和1.3倍。我们的研究揭示了抑制复合对锡掺杂浓度的原子机制,为设计高性能混合钙钛矿提供了一种新方法。