Suppr超能文献

利用聚焦离子束处理提高主动压电阻抗原子力显微镜探针的灵敏度。

Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing.

机构信息

Faculty of Microsystems, Electronics and Photonics, Wroclaw University of Science and Technology, 50-372 Wroclaw, Poland.

Department of Micro- and Nanoelectronic Systems (MNES), Institute of Micro and Nanoelectronics, Ilmenau University of Technology, Gustav-Kirchhoff-Str.1, 98693 Ilmenau, Germany.

出版信息

Sensors (Basel). 2019 Oct 12;19(20):4429. doi: 10.3390/s19204429.

Abstract

This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiffness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations.

摘要

本文提出了一种全面的建模和实验验证主动压阻原子力显微镜(AFM)悬臂梁的方法,该方法是实现高分辨率和高速表面测量的技术。利用聚焦离子束(FIB)技术对集成惠斯通电桥压阻的悬臂梁的机械结构进行了修改,以在最小影响结构刚度及其共振频率的情况下提高挠度灵敏度。FIB 过程是基于有限元建模(FEM)方法进行的。为了监测挠度灵敏度的增加,使用集成在内部的致动器使主动压阻悬臂梁发生挠度,这确保了对传感器特性进行可靠和精确的评估。所提出的方法使挠度灵敏度提高了 2.5 倍,与校准程序和分析计算的结果进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc6b/6832718/2301f879f2d0/sensors-19-04429-g001.jpg

相似文献

1
Sensitivity Improvement to Active Piezoresistive AFM Probes Using Focused Ion Beam Processing.
Sensors (Basel). 2019 Oct 12;19(20):4429. doi: 10.3390/s19204429.
2
Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy.
Ultramicroscopy. 2003 Oct-Nov;97(1-4):385-9. doi: 10.1016/S0304-3991(03)00065-2.
4
Improved Force Spectroscopy Using Focused-Ion-Beam-Modified Cantilevers.
Methods Enzymol. 2017;582:321-351. doi: 10.1016/bs.mie.2016.08.007. Epub 2016 Oct 31.
5
8
Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
Ultramicroscopy. 2018 Jan;184(Pt A):199-208. doi: 10.1016/j.ultramic.2017.09.002. Epub 2017 Sep 20.
9
Atomic force microscope cantilever calibration using a focused ion beam.
Nanotechnology. 2012 Jul 20;23(28):285704. doi: 10.1088/0957-4484/23/28/285704. Epub 2012 Jun 25.
10
Calibration of atomic force microscope cantilevers using standard and inverted static methods assisted by FIB-milled spatial markers.
Nanotechnology. 2013 Jan 11;24(1):015710. doi: 10.1088/0957-4484/24/1/015710. Epub 2012 Dec 10.

引用本文的文献

1
Wavelet-based information theory in quantitative assessment of AFM images' quality.
Sci Rep. 2024 Feb 18;14(1):3996. doi: 10.1038/s41598-024-53846-y.
2
Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine.
Sensors (Basel). 2020 Jul 2;20(13):3715. doi: 10.3390/s20133715.
3
Micro-Cantilever Displacement Detection Based in Optical Fiber Tip.
Sensors (Basel). 2019 Nov 6;19(22):4826. doi: 10.3390/s19224826.

本文引用的文献

1
Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy.
Ultramicroscopy. 2003 Oct-Nov;97(1-4):385-9. doi: 10.1016/S0304-3991(03)00065-2.
2
Quantum size aspects of the piezoresistive effect in ultra thin piezoresistors.
Ultramicroscopy. 2003 Oct-Nov;97(1-4):377-84. doi: 10.1016/S0304-3991(03)00064-0.
3
Atomic force microscope.
Phys Rev Lett. 1986 Mar 3;56(9):930-933. doi: 10.1103/PhysRevLett.56.930.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验