Department of Mechanical and Materials Engineering , The University of Western Ontario , London , Ontario N6A 5B9 , Canada.
ACS Appl Mater Interfaces. 2019 Nov 20;11(46):43130-43137. doi: 10.1021/acsami.9b13451. Epub 2019 Nov 8.
The low performance of palladium (Pd) is a considerable challenge for direct formic acid fuel cells in practical applications. Herein, we develop a simple strategy to synthesize a highly active and durable Pd nanocatalyst encapsulated in ultrathin silica layers with vertically aligned nanochannels covered graphene oxides (Pd/rGO@pSiO) without blocking active sites by selective deposition. The Pd/rGO@pSiO catalyst exhibits very high performance for a formic acid oxidation (FAO) reaction compared with the Pd/rGO without protective silica layers and commercial Pd/C catalysts. Pd/rGO@pSiO shows an FAO activity 3.9 and 3.8 times better than those of Pd/rGO and Pd/C catalysts, respectively. The Pd/rGO@pSiO catalysts are also almost 6-fold more stable than Pd/C and more than 3-fold more stable than Pd/rGO. The outstanding performance of our encapsulated Pd catalysts can be ascribed to the novel design of nanostructures by selective deposition fabricating ultrasmall Pd nanoparticles encapsulated in ultrathin silica layers with vertically aligned nanochannels, which not only avoid blocking the active sites but also facilitate the mass transfer in encapsulated catalysts. Our work indicates an important method to the rational design of high-performance catalysts for fuel cells in practical applications.
钯(Pd)的低性能是直接甲酸燃料电池在实际应用中的一个相当大的挑战。在此,我们开发了一种简单的策略来合成一种高度活性和耐用的 Pd 纳米催化剂,该催化剂被包裹在具有垂直排列纳米通道的超薄二氧化硅层中,并用氧化石墨烯(Pd/rGO@pSiO)覆盖,而不会通过选择性沉积来阻塞活性位点。与没有保护性二氧化硅层的 Pd/rGO 和商业 Pd/C 催化剂相比,Pd/rGO@pSiO 催化剂在甲酸氧化(FAO)反应中表现出非常高的性能。Pd/rGO@pSiO 对 FAO 的活性分别比 Pd/rGO 和 Pd/C 催化剂高 3.9 和 3.8 倍。Pd/rGO@pSiO 催化剂的稳定性也比 Pd/C 高近 6 倍,比 Pd/rGO 高 3 倍以上。我们封装的 Pd 催化剂的优异性能可归因于通过选择性沉积制造的纳米结构的新颖设计,该设计制造了封装在具有垂直排列纳米通道的超薄二氧化硅层中的超小 Pd 纳米颗粒,这不仅避免了阻塞活性位点,而且有利于封装催化剂中的质量传递。我们的工作为燃料电池中高性能催化剂的合理设计提供了一种重要的方法。