Suppr超能文献

用于图像恢复的交替连续和离散时间神经网络。

Alternative continuous- and discrete-time neural networks for image restoration.

机构信息

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi, P. R. China.

出版信息

Network. 2019 Feb-Nov;30(1-4):107-124. doi: 10.1080/0954898X.2019.1677955. Epub 2019 Oct 30.

Abstract

This paper presents alternative continuous- and discrete-time neural networks for image restoration in real time by introducing new vectors and transforming its optimization conditions into a system of double projection equations. The proposed neural networks are shown to be stable in the sense of Lyapunov and convergent for any starting point. Compared with the existing neural networks for image restoration, the proposed models have the least neurons, a one-layer structure and the faster convergence, and is suitable to parallel implementation. The validity and transient behaviour of the proposed neural network is demonstrated by numerical examples.

摘要

本文通过引入新向量并将其优化条件转换为双投影方程系统,提出了用于实时图像恢复的替代连续和离散时间神经网络。所提出的神经网络在 Lyapunov 意义上是稳定的,并且对于任何起点都是收敛的。与现有的图像恢复神经网络相比,所提出的模型具有最少的神经元、一层结构和更快的收敛速度,适合并行实现。通过数值示例验证了所提出的神经网络的有效性和暂态行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验