School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia.
School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.
Sci Rep. 2019 Oct 29;9(1):15465. doi: 10.1038/s41598-019-51789-3.
Nanomedicine development currently suffers from a lack of efficient tools to predict pharmacokinetic behavior without relying upon testing in large numbers of animals, impacting success rates and development costs. This work presents dendPoint, the first in silico model to predict the intravenous pharmacokinetics of dendrimers, a commonly explored drug vector, based on physicochemical properties. We have manually curated the largest relational database of dendrimer pharmacokinetic parameters and their structural/physicochemical properties. This was used to develop a machine learning-based model capable of accurately predicting pharmacokinetic parameters, including half-life, clearance, volume of distribution and dose recovered in the liver and urine. dendPoint successfully predicts dendrimer pharmacokinetic properties, achieving correlations of up to r = 0.83 and Q up to 0.68. dendPoint is freely available as a user-friendly web-service and database at http://biosig.unimelb.edu.au/dendpoint . This platform is ultimately expected to be used to guide dendrimer construct design and refinement prior to embarking on more time consuming and expensive in vivo testing.
纳米医学的发展目前受到缺乏有效工具的限制,这些工具可以在不依赖大量动物测试的情况下预测药代动力学行为,这影响了成功率和开发成本。本研究提出 dendPoint,这是第一个基于理化性质预测树枝状大分子(一种常用的药物载体)静脉药代动力学的计算模型。我们手动整理了最大的树枝状聚合物药代动力学参数及其结构/理化性质的关系数据库。该数据库用于开发基于机器学习的模型,能够准确预测药代动力学参数,包括半衰期、清除率、分布容积和肝脏及尿液中的回收剂量。dendPoint 成功预测了树枝状大分子的药代动力学性质,达到了高达 r=0.83 和 Q 高达 0.68 的相关性。dendPoint 可作为用户友好的网络服务和数据库免费使用,网址为 http://biosig.unimelb.edu.au/dendpoint。最终,该平台有望用于指导树枝状大分子构建设计和改进,以避免进行更耗时和昂贵的体内测试。