Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago 60612, IL, USA; Institute for Tuberculosis Research (ITR), University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, 60612 IL, USA.
Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago 60612, IL, USA; Institute for Tuberculosis Research (ITR), University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, 60612 IL, USA; Center for Natural Product Technologies (CENAPT), University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, 60612, IL, USA.
J Pharm Biomed Anal. 2020 Jan 30;178:112915. doi: 10.1016/j.jpba.2019.112915. Epub 2019 Oct 10.
Whereas generic, LC-based pharmaceutical control quality procedures depend largely on the detection mode and can be particularly 'blind' to certain impurities, NMR is a more versatile and, thus, often more judicious detector. While adulteration presents ever-evolving challenges for the analysis of active pharmaceutical ingredients (APIs) and finished products sold in the worldwide (online) marketplace, research chemicals are usually trusted rather than being considered flawed or even adulterated. This report shows how NMR analysis uncovered the unanticipated presence of substantial amounts of mannitol (20 and 43% w/w) as undeclared constituent in two custom synthetic peptides, DR and DRVYI, that were sourced commercially. Quantitative H NMR (qHNMR) readily detected the contaminant, even on a 60 MHz benchtop instrument, and quantified the highly polar and UV-transparent adulterant. Quantum-mechanical H iterative Full Spin Analysis (HiFSA) not only achieved unambiguous identification of both the mannitol and the peptides, but also confirmed the quantitative results. The cases show that experimental verification supersedes trust in both pharmaceutical and research QC. They also highlight the promising utility of both established high-field and recently re-evolving low-field benchtop qHNMR. The unanticipated findings remind manufacturers and researchers alike about the advantages of including/performing NMR and qNMR with routine CofA documentation and/or verification of research grade chemicals. Especially when done jointly, this can greatly improve confidence in research and help streamline the pharmaceutical QC toolbox.
虽然基于通用型和 LC 的药物控制质量程序在很大程度上依赖于检测模式,并且可能对某些杂质特别“盲目”,但 NMR 是一种更通用的检测方法,因此通常更明智。虽然掺假对在全球(在线)市场上销售的原料药 (API) 和成品的分析提出了不断演变的挑战,但研究用化学品通常被信任,而不是被认为有缺陷甚至掺假。本报告展示了 NMR 分析如何揭示了在两个定制合成肽 DR 和 DRVYI 中未申报的大量甘露醇(20%和 43%w/w)的意外存在,这些肽是商业采购的。定量氢 NMR(qHNMR)即使在 60MHz 的台式仪器上也能轻易检测到污染物,并对高极性和紫外透明的掺杂物进行定量。量子力学氢迭代全自旋分析(HiFSA)不仅实现了甘露醇和肽的明确鉴定,还验证了定量结果。这些案例表明,实验验证取代了对药物和研究 QC 的信任。它们还突出了已建立的高场和最近重新发展的低场台式 qHNMR 的有希望的用途。意外的发现提醒制造商和研究人员,在常规 CoA 文件中包含/执行 NMR 和 qNMR 以及验证研究级化学品的优势。特别是当联合使用时,这可以大大提高对研究的信心,并有助于简化药物 QC 工具包。