Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
Science. 2019 Nov 1;366(6465):613-620. doi: 10.1126/science.aax7427.
The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
用于核聚变等应用的氢同位素分离是一个重大挑战。当前的技术既耗能又低效。纳米多孔材料具有通过动力学量子筛分来分离氢同位素的潜力,但高分离选择性往往与低吸附容量相关,这可能会阻碍工艺放大。在这项研究中,我们使用有机合成来修饰笼状分子的内部空腔,以生产出优良的量子筛杂化材料。通过将小孔和大孔笼在单个固体中结合在一起,我们生产出了一种具有最佳分离性能的材料,其具有优异的氘/氢选择性(8.0)和高的氘吸附量(4.7 毫摩尔/克)。