Yang Nan, Miranowicz Adam, Liu Yong-Chun, Xia Keyu, Nori Franco
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.
Sci Rep. 2019 Nov 1;9(1):15874. doi: 10.1038/s41598-019-51559-1.
The synchronization of the motion of microresonators has attracted considerable attention. In previous studies, the microresonators for synchronization were studied mostly in the linear regime. While the important problem of synchronizing nonlinear microresonators was rarely explored. Here we present theoretical methods to synchronize the motions of chaotic optical cavity modes in an optomechanical system, where one of the optical modes is strongly driven into chaotic motion and transfers chaos to other weakly driven optical modes via a common mechanical resonator. This mechanical mode works as a common force acting on each optical mode, which, thus, enables the synchronization of states. We find that complete synchronization can be achieved in two identical chaotic cavity modes. For two arbitrary nonidentical chaotic cavity modes, phase synchronization can also be achieved in the strong-coupling small-detuning regime.
微谐振器运动的同步已引起了相当大的关注。在先前的研究中,用于同步的微谐振器大多是在线性 regime 下进行研究的。而同步非线性微谐振器这一重要问题却很少被探索。在此,我们提出理论方法来同步光机械系统中混沌光学腔模的运动,其中一个光学模被强烈驱动进入混沌运动,并通过一个共同的机械谐振器将混沌传递给其他弱驱动的光学模。这个机械模作为作用在每个光学模上的共同力,从而实现状态的同步。我们发现,在两个相同的混沌腔模中可以实现完全同步。对于两个任意不同的混沌腔模,在强耦合小失谐 regime 下也可以实现相位同步。