文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性微丝在磁传感器应用中的发展。

Development of Magnetic Microwires for Magnetic Sensor Applications.

机构信息

Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco/Euskal Herriko Unibersitatea, UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian, Spain.

Departamento de Física Aplicada, EIG, Basque Country University, Universidad del País Vasco/Euskal Herriko Unibersitatea, UPV/EHU, 20018 San Sebastian, Spain.

出版信息

Sensors (Basel). 2019 Nov 2;19(21):4767. doi: 10.3390/s19214767.


DOI:10.3390/s19214767
PMID:31684037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6864710/
Abstract

Thin magnetic wires can present excellent soft magnetic properties (with coercivities up to 4 A/m), Giant Magneto-impedance effect, GMI, or rectangular hysteresis loops combined with quite fast domain wall, DW, propagation. In this paper we overview the magnetic properties of thin magnetic wires and post-processing allowing optimization of their magnetic properties for magnetic sensor applications. We concluded that the GMI effect, magnetic softness or DW dynamics of microwires can be tailored by controlling the magnetoelastic anisotropy of as-prepared microwires or controlling their internal stresses and domain structure by appropriate thermal treatment.

摘要

细的金属丝可以呈现出极好的软磁性能(矫顽力高达 4A/m)、巨磁阻抗效应、GMI,或矩形磁滞回线,并结合相当快的畴壁、DW,传播。在本文中,我们综述了细金属丝的磁性和后处理,这使得可以优化其磁性能,以用于磁传感器应用。我们得出结论,GMI 效应、磁性柔软性或 DW 动力学可以通过控制制备好的金属丝的磁弹各向异性或通过适当的热处理来控制其内部应力和畴结构来调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/72109509b5ff/sensors-19-04767-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/f7f3a5c0937a/sensors-19-04767-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7ad3993819a1/sensors-19-04767-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/801b8346fc76/sensors-19-04767-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/2a5a3cffc31d/sensors-19-04767-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7475966778ed/sensors-19-04767-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/0eb3ae5a09ad/sensors-19-04767-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/a9b18efb1402/sensors-19-04767-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/27896e7156db/sensors-19-04767-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/49604e47b701/sensors-19-04767-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/4c162d5ed934/sensors-19-04767-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/1eb0663aa59a/sensors-19-04767-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/67277249f3d7/sensors-19-04767-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/ed9163924752/sensors-19-04767-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/e6cfe7b485b9/sensors-19-04767-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7c331d0eee32/sensors-19-04767-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/c48a720f863f/sensors-19-04767-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/72109509b5ff/sensors-19-04767-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/f7f3a5c0937a/sensors-19-04767-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7ad3993819a1/sensors-19-04767-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/801b8346fc76/sensors-19-04767-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/2a5a3cffc31d/sensors-19-04767-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7475966778ed/sensors-19-04767-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/0eb3ae5a09ad/sensors-19-04767-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/a9b18efb1402/sensors-19-04767-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/27896e7156db/sensors-19-04767-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/49604e47b701/sensors-19-04767-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/4c162d5ed934/sensors-19-04767-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/1eb0663aa59a/sensors-19-04767-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/67277249f3d7/sensors-19-04767-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/ed9163924752/sensors-19-04767-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/e6cfe7b485b9/sensors-19-04767-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/7c331d0eee32/sensors-19-04767-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/c48a720f863f/sensors-19-04767-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e712/6864710/72109509b5ff/sensors-19-04767-g017.jpg

相似文献

[1]
Development of Magnetic Microwires for Magnetic Sensor Applications.

Sensors (Basel). 2019-11-2

[2]
Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.

Sensors (Basel). 2020-3-11

[3]
Optimization of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Annealing.

Sensors (Basel). 2023-8-28

[4]
Magnetic Microwires with Unique Combination of Magnetic Properties Suitable for Various Magnetic Sensor Applications.

Sensors (Basel). 2020-12-16

[5]
Tuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heating.

Sensors (Basel). 2022-1-29

[6]
Thin magnetically soft wires for magnetic microsensors.

Sensors (Basel). 2009-11-18

[7]
Review of Domain Wall Dynamics Engineering in Magnetic Microwires.

Nanomaterials (Basel). 2020-12-1

[8]
Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy.

Sci Rep. 2019-8-27

[9]
Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy.

Nanoscale Res Lett. 2012-4-18

[10]
Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing.

Sci Rep. 2018-2-16

引用本文的文献

[1]
Advantages of Bistable Microwires in Digital Signal Processing.

Sensors (Basel). 2024-4-10

[2]
Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica.

Molecules. 2023-1-3

[3]
Tuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heating.

Sensors (Basel). 2022-1-29

[4]
High-Frequency Magnetoimpedance (MI) and Stress-MI in Amorphous Microwires with Different Anisotropies.

Nanomaterials (Basel). 2021-5-2

[5]
Magnetic Microwires with Unique Combination of Magnetic Properties Suitable for Various Magnetic Sensor Applications.

Sensors (Basel). 2020-12-16

[6]
Review of Domain Wall Dynamics Engineering in Magnetic Microwires.

Nanomaterials (Basel). 2020-12-1

[7]
Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications.

Sensors (Basel). 2020-6-5

[8]
Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.

Sensors (Basel). 2020-3-11

[9]
Stray Flux Sensor Core Impact on the Condition Monitoring of Electrical Machines.

Sensors (Basel). 2020-1-29

本文引用的文献

[1]
The Development of ASIC Type GSR Sensor Driven by GHz Pulse Current.

Sensors (Basel). 2020-2-14

[2]
Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy.

Sci Rep. 2019-8-27

[3]
Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing.

Sci Rep. 2018-2-16

[4]
Magnetoelastic contribution in domain wall propagation of micrometric wires.

J Nanosci Nanotechnol. 2012-9

[5]
Influence of the magnetoelastic anisotropy on the domain wall dynamics in bistable amorphous wires.

J Phys Condens Matter. 2012-6-27

[6]
Small magnetic sensors for space applications.

Sensors (Basel). 2009-3-30

[7]
Accurate measurement of domain wall velocity in amorphous microwires, submicron wires, and nanowires.

Rev Sci Instrum. 2011-9

[8]
Minerals go critical.

Nat Chem. 2011-8-23

[9]
Magnetic domain-wall logic.

Science. 2005-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索