Suppr超能文献

Local linear estimation for spatial random processes with stochastic trend and stationary noise.

作者信息

Hyun Jung Won, Burman Prabir, Paul Debashis

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place Memphis, TN 38105.

Department of Statistics, University of California, Davis, CA 95616.

出版信息

Sankhya Ser B. 2018 Nov;80(2):369-394. doi: 10.1007/s13571-018-0155-4. Epub 2018 Mar 9.

Abstract

We consider the problem of estimating the trend for a spatial random process model expressed as () = () + () + (), where the trend is a smooth random function, () is a mean zero, stationary random process, and {()} are assumed to be i.i.d. noise with zero mean. We propose a new model for stochastic trend in by generalizing the notion of a structural model for trend in time series. We estimate the stochastic trend nonparametrically using a local linear regression method and derive the asymptotic mean squared error of the trend estimate under the proposed model for trend. Our results show that the asymptotic mean squared error for the stochastic trend is of the same order of magnitude as that of a deterministic trend of comparable complexity. This result suggests from the point of view of estimation under stationary noise, it is immaterial whether the trend is treated as deterministic or stochastic. Moreover, we show that the rate of convergence of the estimator is determined by the degree of decay of the correlation function of the stationary process () and this rate can be different from the usual rate of convergence found in the literature on nonparametric function estimation. We also propose a data dependent selection procedure for the bandwidth parameter which is based on a generalization of Mallow's criterion. We illustrate the methodology by simulation studies and by analyzing a data on surface temperature anomalies.

摘要

相似文献

1
Local linear estimation for spatial random processes with stochastic trend and stationary noise.
Sankhya Ser B. 2018 Nov;80(2):369-394. doi: 10.1007/s13571-018-0155-4. Epub 2018 Mar 9.
2
Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes.
J Econom. 2016 Sep;194(1):44-56. doi: 10.1016/j.jeconom.2016.04.002. Epub 2016 Apr 25.
3
Stochastic error whitening algorithm for linear filter estimation with noisy data.
Neural Netw. 2003 Jun-Jul;16(5-6):873-80. doi: 10.1016/S0893-6080(03)00109-6.
4
A new class of epsilon-optimal learning automata.
IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):246-54. doi: 10.1109/tsmcb.2003.811117.
5
Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies.
J Theor Biol. 2018 Jul 14;449:35-52. doi: 10.1016/j.jtbi.2018.04.023. Epub 2018 Apr 16.
6
Density estimation and random variate generation using multilayer networks.
IEEE Trans Neural Netw. 2002;13(3):497-520. doi: 10.1109/TNN.2002.1000120.
7
Serial correlation of detrended time series.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036707. doi: 10.1103/PhysRevE.78.036707. Epub 2008 Sep 23.
9
A termination criterion for parameter estimation in stochastic models in systems biology.
Biosystems. 2015 Nov;137:55-63. doi: 10.1016/j.biosystems.2015.08.003. Epub 2015 Sep 8.
10
Stochastic contraction based online estimation of second order wiener system.
ISA Trans. 2017 Jul;69:131-139. doi: 10.1016/j.isatra.2017.05.004. Epub 2017 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验