Suppr超能文献

i 型 DNA 中的激子吸收和发光。

Exciton Absorption and Luminescence in i-Motif DNA.

机构信息

Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, 199034, St. Petersburg, Russia.

P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Pr., 119991, Moscow, Russia.

出版信息

Sci Rep. 2019 Nov 5;9(1):15988. doi: 10.1038/s41598-019-52242-1.

Abstract

We have studied the excited-state dynamics for the i-motif form of cytosine chains (dC), using the ultrafast fluorescence up-conversion technique. We have also calculated vertical electronic transition energies and determined the nature of the corresponding excited states in a model tetramer i-motif structure. Quantum chemical calculations of the excitation spectrum of a tetramer i-motif structure predict a significant (0.3 eV) red shift of the lowest-energy transition in the i-motif form relative to its absorption maximum, which agrees with the experimental absorption spectrum. The lowest excitonic state in i-(dC) is responsible for a 2 ps red-shifted emission at 370 nm observed in the decay-associated spectra obtained on the femtosecond time-scale. This delocalized (excitonic) excited state is likely a precursor to a long-lived excimer state observed in previous studies. Another fast 310 fs component at 330 nm is assigned to a monomer-like locally excited state. Both emissive states form within less than the available time resolution of the instrument (100 fs). This work contributes to the understanding of excited-state dynamics of DNA within the first few picoseconds, which is the most interesting time range with respect to unraveling the photodamage mechanism, including the formation of the most dangerous DNA lesions such as cyclobutane pyrimidine dimers.

摘要

我们使用超快荧光上转换技术研究了胞嘧啶链(dC)的 i-motif 形式的激发态动力学。我们还计算了垂直电子跃迁能量,并确定了模型四聚体 i-motif 结构中相应激发态的性质。四聚体 i-motif 结构激发光谱的量子化学计算预测,与吸收最大值相比,i-motif 形式的最低能量跃迁会发生显著的(0.3 eV)红移,这与实验吸收光谱一致。i-(dC)中的最低激子态负责在飞秒时间尺度上获得的衰减相关光谱中观察到的 2 ps 红移发射,其发射波长在 370nm。这个离域(激子)激发态可能是先前研究中观察到的长寿命激基态的前体。另一个在 330nm 处的快速 310fs 分量被分配给单体类似的局部激发态。这两种发射态都在仪器的可用时间分辨率(100fs)内形成。这项工作有助于理解 DNA 在最初几个皮秒内的激发态动力学,这是最有趣的时间范围,与揭示光损伤机制有关,包括形成最危险的 DNA 损伤,如环丁烷嘧啶二聚体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64d4/6831829/e4696a061a65/41598_2019_52242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验