Suppr超能文献

提高间充质干细胞的存活率、植入率和成骨潜能。

Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells.

作者信息

García-Sánchez Daniel, Fernández Darío, Rodríguez-Rey José C, Pérez-Campo Flor M

机构信息

Department of Molecular Biology, Faculty of Medicine, University of Cantabria, Cantabria 39011, Spain.

Laboratorio de Biología Celular y Molecular, Facultad de Odontología, Universidad Nacional del Nordeste, Corrientes W3400, Argentina.

出版信息

World J Stem Cells. 2019 Oct 26;11(10):748-763. doi: 10.4252/wjsc.v11.i10.748.

Abstract

Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques.

摘要

间充质干细胞(MSCs)因其可塑性和易于获取,是骨再生治疗的理想候选者。基于MSC的治疗通常被认为是一种安全的程序,然而,迄今为止获得的长期结果远不能令人满意。这些治疗局限性的主要原因是归巢效率低下、植入和向成骨细胞分化。许多研究提出了改进方法,以提高MSC的植入和移植细胞的成骨分化。几种策略旨在提高细胞对受体组织中恶劣微环境的抵抗力,并增加移植后的细胞存活率。这些策略的范围可以从简单的培养条件改变(即细胞预处理)到细胞的基因改造以避免细胞衰老。为了增强移植细胞的成骨潜力并诱导骨形成,也做了很多努力,主要是通过使用生物活性或仿生支架,不过也将讨论其他替代方法。本综述旨在总结几种最新方法,提供基于MSC的再生技术主要进展的最新观点。

相似文献

1
Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells.
World J Stem Cells. 2019 Oct 26;11(10):748-763. doi: 10.4252/wjsc.v11.i10.748.
3
The Role of Flavonoids in the Osteogenic Differentiation of Mesenchymal Stem Cells.
Front Pharmacol. 2022 Apr 6;13:849513. doi: 10.3389/fphar.2022.849513. eCollection 2022.
4
Hypoxia-Conditioned Mesenchymal Stem Cells in Tissue Regeneration Application.
Tissue Eng Part B Rev. 2022 Oct;28(5):966-977. doi: 10.1089/ten.TEB.2021.0145. Epub 2022 Jan 10.
5
Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling.
Stem Cells Transl Med. 2016 Sep;5(9):1229-37. doi: 10.5966/sctm.2015-0412. Epub 2016 Jun 30.
9
Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model.
Arch Oral Biol. 2016 Aug;68:123-30. doi: 10.1016/j.archoralbio.2016.04.007. Epub 2016 Apr 21.
10
Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration.
Regen Med. 2020 Apr;15(4):1579-1594. doi: 10.2217/rme-2019-0081. Epub 2020 Apr 16.

引用本文的文献

2
Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress.
Adipocyte. 2025 Dec;14(1):2467150. doi: 10.1080/21623945.2025.2467150. Epub 2025 Feb 20.
5
Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges.
Malays J Med Sci. 2024 Oct;31(5):56-82. doi: 10.21315/mjms2024.31.5.5. Epub 2024 Oct 8.
6
Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives.
Eur J Med Res. 2024 Jul 25;29(1):386. doi: 10.1186/s40001-024-01987-1.

本文引用的文献

1
Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1964-1971. doi: 10.1021/acsbiomaterials.6b00109. Epub 2016 Jun 20.
2
Advances in three-dimensional bioprinting of bone: Progress and challenges.
J Tissue Eng Regen Med. 2019 Jun;13(6):925-945. doi: 10.1002/term.2847. Epub 2019 Apr 24.
5
Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration.
Tissue Eng Regen Med. 2018 Sep 21;15(6):761-769. doi: 10.1007/s13770-018-0144-8. eCollection 2018 Dec.
6
Chemokine Receptors Expression in MSCs: Comparative Analysis in Different Sources and Passages.
Tissue Eng Regen Med. 2017 Sep 19;14(5):605-615. doi: 10.1007/s13770-017-0069-7. eCollection 2017 Oct.
7
3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells.
Int J Mol Sci. 2018 Oct 13;19(10):3150. doi: 10.3390/ijms19103150.
8
Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells.
Stem Cell Res Ther. 2018 Oct 11;9(1):265. doi: 10.1186/s13287-018-1007-x.
9
Utility of extracellular matrix powders in tissue engineering.
Organogenesis. 2018;14(4):172-186. doi: 10.1080/15476278.2018.1503771. Epub 2018 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验