Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.
School of Physics , Peking University , Beijing 100871 , P. R. China.
Inorg Chem. 2019 Nov 18;58(22):15216-15224. doi: 10.1021/acs.inorgchem.9b02190. Epub 2019 Nov 6.
The discovery of phosphorene, a single layer of black phosphorus, has accelerated the investigation of pnictogen nanomaterials, leading to the recent identification of arsenene and antimonene. These two-dimensional nanomaterials display physical properties superior to those of graphene for some applications. Recently, single-wall carbon nanotubes (SWCNTs) have been filled with P molecules from the melt and As molecules from the vapor phase. Confined within SWCNTs, polymerization reactions yielded new one-dimensional pnictogen allotropes. Here, we show using high-resolution electron microscopy that such nanostructures can also be observed upon filling SWCNTs from the vapor phase using red phosphorus as the source material. Using larger-diameter SWCNTs, the vapor phase favors the formation of double-stranded phosphorus zigzag ladders observed here for the first time. Overall, however, SWCNTs were generally found to fill more efficiently with liquid phosphorus; substantial decreases in the filling yields were observed for both phosphorus and arsenic filling of narrow SWCNTs using the vapor route. Attempts to extend the pnitogen series using molten antimony gave very low filling yields. However, the antimony zigzag ladder was observed on two occasions, suggesting that this structural motif dominates across the pnictogens. Computational predictions of the encapsulation energies of the various pnictogen nanostructures are consistent with the observed experimental trends, and band gap calculations predict that the single-stranded zigzag chains of all investigated pnictogens are fully metallic. Using SWCNTs with diameters of >1.5 nm revealed a plethora of complex new phosphorus nanostructures, which highlights an exciting new avenue for future work in this area.
黑磷的单层,即磷烯的发现,加速了对磷属纳米材料的研究,进而最近又发现了砷烯和锑烯。这两种二维纳米材料在某些应用方面表现出优于石墨烯的物理性质。最近,单壁碳纳米管(SWCNT)从熔融状态下填充了 P 分子,从气相中填充了 As 分子。在 SWCNT 内,聚合反应产生了新的一维磷属同素异形体。在这里,我们使用高分辨率电子显微镜表明,当使用红磷作为源材料从气相填充 SWCNT 时,也可以观察到这种纳米结构。使用较大直径的 SWCNT,气相有利于形成这里首次观察到的双链磷锯齿梯。然而,总体而言,SWCNT 通常更有效地填充液态磷;通过气相途径对较窄的 SWCNT 进行磷和砷填充时,填充产率均大幅下降。尝试使用熔融锑来扩展磷属元素系列,但填充产率非常低。然而,两次观察到锑锯齿梯,这表明这种结构模式在整个磷属元素中占主导地位。各种磷属纳米结构的封装能的计算预测与观察到的实验趋势一致,能带隙计算预测所有研究的磷属元素的单链锯齿链都是完全金属的。使用直径大于 1.5nm 的 SWCNT 揭示了大量复杂的新磷纳米结构,这为该领域的未来工作开辟了令人兴奋的新途径。