Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215.
Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria.
J Neurosci. 2020 Jan 2;40(1):171-190. doi: 10.1523/JNEUROSCI.1278-19.2019. Epub 2019 Nov 6.
Origin and functions of intermittent transitions among sleep stages, including brief awakenings and arousals, constitute a challenge to the current homeostatic framework for sleep regulation, focusing on factors modulating sleep over large time scales. Here we propose that the complex micro-architecture characterizing sleep on scales of seconds and minutes results from intrinsic non-equilibrium critical dynamics. We investigate θ- and δ-wave dynamics in control rats and in rats where the sleep-promoting ventrolateral preoptic nucleus (VLPO) is lesioned (male Sprague-Dawley rats). We demonstrate that bursts in θ and δ cortical rhythms exhibit complex temporal organization, with long-range correlations and robust duality of power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, features typical of non-equilibrium systems self-organizing at criticality. We show that such non-equilibrium behavior relates to anti-correlated coupling between θ- and δ-bursts, persists across a range of time scales, and is independent of the dominant physiologic state; indications of a basic principle in sleep regulation. Further, we find that VLPO lesions lead to a modulation of cortical dynamics resulting in altered dynamical parameters of θ- and δ-bursts and significant reduction in θ-δ coupling. Our empirical findings and model simulations demonstrate that θ-δ coupling is essential for the emerging non-equilibrium critical dynamics observed across the sleep-wake cycle, and indicate that VLPO neurons may have dual role for both sleep and arousal/brief wake activation. The uncovered critical behavior in sleep- and wake-related cortical rhythms indicates a mechanism essential for the micro-architecture of spontaneous sleep-stage and arousal transitions within a novel, non-homeostatic paradigm of sleep regulation. We show that the complex micro-architecture of sleep-stage/arousal transitions arises from intrinsic non-equilibrium critical dynamics, connecting the temporal organization of dominant cortical rhythms with empirical observations across scales. We link such behavior to sleep-promoting neuronal population, and demonstrate that VLPO lesion (model of insomnia) alters dynamical features of θ and δ rhythms, and leads to significant reduction in θ-δ coupling. This indicates that VLPO neurons may have dual role for both sleep and arousal/brief wake control. The reported empirical findings and modeling simulations constitute first evidences of a neurophysiological fingerprint of self-organization and criticality in sleep- and wake-related cortical rhythms; a mechanism essential for spontaneous sleep-stage and arousal transitions that lays the bases for a novel, non-homeostatic paradigm of sleep regulation.
睡眠阶段之间间歇性转变的起源和功能,包括短暂觉醒和唤醒,对当前以调节睡眠的大时间尺度上的因素为重点的睡眠稳态框架构成了挑战。在这里,我们提出,在秒和分钟的睡眠规模上表现出的复杂微观结构源于内在的非平衡临界动力学。我们研究了控制大鼠和外侧下丘脑前核(VLPO)损伤大鼠(雄性 Sprague-Dawley 大鼠)的θ波和δ波动力学。我们证明,皮质节律的爆发表现出复杂的时间组织,具有长程相关性和强大的幂律(θ爆发,活跃相)和指数样(δ爆发,静止相)持续时间分布的二元性,这是自组织在临界状态下的非平衡系统的典型特征。我们表明,这种非平衡行为与θ和δ爆发之间的反相关耦合有关,在一系列时间尺度上持续存在,并且与主导生理状态无关;这是睡眠调节基本原理的指示。此外,我们发现 VLPO 损伤导致皮质动力学的调制,导致θ和δ爆发的动力学参数发生变化,并且θ-δ 耦合显著减少。我们的实证发现和模型模拟表明,θ-δ 耦合对于整个睡眠-觉醒周期中观察到的新兴非平衡临界动力学至关重要,并表明 VLPO 神经元可能对睡眠和唤醒/短暂觉醒激活都具有双重作用。睡眠和觉醒相关皮质节律中的临界行为表明,这是自发睡眠阶段和唤醒过渡的微观结构的重要机制,为睡眠调节的新非稳态范式内的睡眠阶段和唤醒过渡提供了一种机制。我们表明,睡眠阶段/唤醒过渡的复杂微观结构源于内在的非平衡临界动力学,将主导皮质节律的时间组织与跨尺度的经验观察联系起来。我们将这种行为与促进睡眠的神经元群体联系起来,并证明 VLPO 损伤(失眠模型)改变了θ和δ节律的动力学特征,并导致θ-δ 耦合显著减少。这表明 VLPO 神经元可能对睡眠和唤醒/短暂觉醒控制都具有双重作用。报告的实证发现和建模模拟构成了睡眠和觉醒相关皮质节律中自组织和临界行为的神经生理学特征的第一个证据;这是自发睡眠阶段和唤醒过渡的重要机制,为睡眠调节的新非稳态范式奠定了基础。