INSERM-UMR1245, Team 4, Epigenetics and Physiopathology of Neurodevelopmental Brain Lesions, Normandie Université, Faculté de Médecine et de Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France.
CURIB, Normandie Université, Place Emile Blondel, 76130 Mont-Saint-Aignan, France.
Exp Neurol. 2020 Jan;323:113087. doi: 10.1016/j.expneurol.2019.113087. Epub 2019 Nov 5.
Neonatal encephalopathy frequently results from hypoxia-ischemia (HI) or inflammation in preterm or term neonates. Neuropathology depends on cerebral development at insult time, but the poor correlation of neuromotor, cognitive, and behavioral disabilities in infancy with initial imaging and clinical records precludes early prognosis. The Rice-Vannucci HI procedure was applied to wild type and tissue plasminogen activator knockout (tPA-KO) mice as surrogates for human preterm (with five-day-old postnatal (P5) mice) or human term (with ten-day-old postnatal (P10) mice). Acute and delayed T2-magnetic resonance imaging (T2-MRI) signals and cognitive deficits in adulthood (spatial memory and social interaction) were investigated in the same animals. Early vascular tPA and matrix metalloproteinase-9 (MMP-9) activities, blood-brain barrier permeability to water or IgG, and microglial activation were assessed separately. HI in P5 or P10 mice induced early hemisphere swelling in T2-MRI scans, and a delayed atrophy of the cortex and hippocampus, but affected white matter in the P5 group only, irrespective of the wild type or tPA-KO genotype. Adults had no motor disabilities, but we did find HI-induced age-dependent deficits, preferentially social interaction and activity in P5 mice, and spatial learning in P10 mice. In P5 mice, tPA-KO prevented MMP-9 activation, IgG extravasation, microglial activation, and behavior impairments. In P10 mice, MMP-9 activation and inflammatory processes remained in the hippocampus of the tPA-KO group, and also contributed to persistent spatial learning deficits. Perinatal HI in mice mimicked the unpredictability of outcomes from imaging in human clinics. Delayed deficits appeared associated to vascular dysfunction-induced inflammation, which recalls our previous work showing major vascular maturation between P5 and P10 stages. Using omics to explore neural, glial, or brain vessel markers in neonate blood may be a promising perspective to identify pertinent prognostic tools.
新生儿脑病常由早产儿或足月儿的缺氧缺血(HI)或炎症引起。神经病理学取决于损伤时的脑发育,但在婴儿期,神经运动、认知和行为障碍与初始影像学和临床记录的相关性较差,因此无法进行早期预后。将 Rice-Vannucci HI 程序应用于野生型和组织型纤溶酶原激活物敲除(tPA-KO)小鼠,作为人类早产儿(用 5 天龄新生(P5)小鼠)或人类足月儿(用 10 天龄新生(P10)小鼠)的替代物。在同一只动物中研究了急性和延迟 T2 磁共振成像(T2-MRI)信号以及成年后的认知缺陷(空间记忆和社会互动)。分别评估了早期血管型 tPA 和基质金属蛋白酶-9(MMP-9)活性、血脑屏障对水或 IgG 的通透性以及小胶质细胞激活。P5 或 P10 小鼠的 HI 在 T2-MRI 扫描中诱导早期半球肿胀,并导致皮质和海马的延迟萎缩,但仅在 P5 组中影响白质,而与野生型或 tPA-KO 基因型无关。成年人没有运动障碍,但我们确实发现 HI 诱导的年龄依赖性缺陷,在 P5 小鼠中主要是社会互动和活动,在 P10 小鼠中是空间学习。在 P5 小鼠中,tPA-KO 可防止 MMP-9 激活、IgG 外渗、小胶质细胞激活和行为障碍。在 P10 小鼠中,MMP-9 激活和炎症过程仍存在于 tPA-KO 组的海马体中,并且也导致持续的空间学习缺陷。小鼠围产期 HI 模拟了人类临床影像学结果的不可预测性。延迟缺陷似乎与血管功能障碍诱导的炎症有关,这让我们想起了之前的工作,表明在 P5 和 P10 阶段之间存在主要的血管成熟过程。使用组学方法在新生儿血液中探索神经、神经胶质或脑血管标志物可能是识别相关预后工具的有前途的方法。