Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China.
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China.
Nano Lett. 2019 Dec 11;19(12):8690-8700. doi: 10.1021/acs.nanolett.9b03340. Epub 2019 Nov 20.
Recent drug delivery nanosystems for cancer treatment still suffer from the poor tumor accumulation and low therapeutic efficacy due to the complex biological barriers. To resolve these problems, in this work, a novel gradient redox-responsive and two-stage rocket-mimetic drug nanocarrier is designed and constructed for improved tumor accumulation and safe chemotherapy. The nanocarrier is constructed on the basis of the disulfide-doped organosilica-micellar hybrid nanoparticles and the following dual-functional modification with disulfide-bonded polyethylene glycol (PEG) and amido-bonded polyethylenimine (PEI). First, prolonged circulation duration in the bloodstream is guaranteed due to the shielding of the outer PEG chains. Once the nanocarrier accumulates at the tumoral extracellular microenvironment with low glutathione (GSH) concentrations, the first-stage redox-responsive behavior with the separation of PEG and the exposure of PEI is triggered, leading to the improved tumor accumulation and cellular internalization. Furthermore, with their endocytosis by tumor cells, a high concentration of GSH induces the second-stage redox-responsiveness with the degradation of silsesquioxane framework and the release of the encapsulated drugs. As a result, the rocket-mimetic drug carrier displays longer circulation duration in the bloodstream, higher tumor accumulation capability, and improved antitumor efficacy (which is 2.5 times higher than that with inseparable PEG). It is envisioned that the rocket-mimetic strategy can provide new solutions for improving tumor accumulation and safety of nanocarriers in further cancer chemotherapy.
用于癌症治疗的最近的药物输送纳米系统仍然由于复杂的生物屏障而遭受差的肿瘤积累和低的治疗效果。为了解决这些问题,在这项工作中,设计并构建了一种新颖的梯度氧化还原响应和两阶段火箭模拟药物纳米载体,以提高肿瘤积累和安全化疗的效果。该纳米载体是基于二硫键掺杂的有机硅-胶束杂化纳米粒子,并通过二硫键结合的聚乙二醇(PEG)和酰胺键结合的聚乙烯亚胺(PEI)的双重功能修饰构建而成。首先,由于外层 PEG 链的屏蔽作用,保证了在血液中的延长循环持续时间。一旦纳米载体在肿瘤细胞外的低谷胱甘肽(GSH)浓度的微环境中积累,就会触发第一阶段的氧化还原响应行为,导致 PEG 的分离和 PEI 的暴露,从而提高肿瘤的积累和细胞内化。此外,随着肿瘤细胞的内吞作用,高浓度的 GSH 会诱导第二阶段的氧化还原响应,导致硅氧烷骨架的降解和包封药物的释放。结果,火箭模拟药物载体在血液中的循环持续时间更长,肿瘤积累能力更高,抗肿瘤效果得到改善(比不可分离的 PEG 高 2.5 倍)。可以预见,火箭模拟策略可以为进一步的癌症化疗中提高纳米载体的肿瘤积累和安全性提供新的解决方案。