Institute of Experimental Physics, SAS and P. J. Šafárik University Košice, Watsonova 47, 04001 Košice, Slovakia.
Phys Rev Lett. 2019 Oct 18;123(16):161302. doi: 10.1103/PhysRevLett.123.161302.
We report on the theoretical model and experimental results of the experiment made in a limit of absolute zero temperature (∼600 μK) studying the spin wave analog of black- and white-hole horizons using spin (magnonic) superfluidity in superfluid ^{3}He-B. As an experimental tool simulating the properties of the black- and white-hole horizons, we used the spin-precession waves propagating on the background of the spin supercurrents between two Bose-Einstein condensates of magnons in the form of homogeneously precessing domains. We provide experimental evidence of the white hole formation for spin precession waves in this system, together with the observation of an amplification effect. Moreover, the estimated temperature of the spontaneous Hawking radiation in this system is about 4 orders of magnitude lower than the system's background temperature which makes it a promising tool for studying the effect of spontaneous Hawking radiation.
我们报告了在绝对零度极限(约 600μK)下进行的实验的理论模型和实验结果,该实验使用超流 ^3He-B 中的自旋(磁声子)超流来研究自旋波类似的黑、白洞视界。作为模拟黑、白洞视界性质的实验工具,我们使用自旋进动波在两个玻色-爱因斯坦凝聚体之间的自旋超导电流背景上传播,形式为均匀进动的畴。我们为自旋进动波在这个系统中形成白洞提供了实验证据,同时观察到了放大效应。此外,在这个系统中自发霍金辐射的估计温度比系统的背景温度低约 4 个数量级,这使其成为研究自发霍金辐射效应的有前途的工具。