Institute of Engineering and Energy Technologies, University of the West of Scotland, United Kingdom.
Institute of Engineering and Energy Technologies, University of the West of Scotland, United Kingdom.
Sci Total Environ. 2019 Oct 20;688:1016-1035. doi: 10.1016/j.scitotenv.2019.06.397. Epub 2019 Jun 25.
This work studies the impact of water formation on the performance of Proton Exchange Membrane Fuel Cells (PEMFCs). The work examines water management in PEM fuel cells both experimentally and theoretically. Experiments are conducted using a one stack PEM fuel cell fitted with Nafion membrane to evaluate its performance using both dry and humidified hydrogen and air. Results obtained confirms the importance of fuel humidification in improving the performance of the fuel cell with all levels of humidification producing better performance than that obtained using dry hydrogen or dry air. Experiments using air with 50% relative humidity indicate drop in the fuel cell performance when comparing the results to those from air with 100% relative humidity. The experimental data provides the basis to validate a computation fluid dynamics model for the fuel cell that is used to carry out further studies and conduct a parametric analysis of the fuel cell performance to examine the effects of flow plates designs, flow patterns such as parallel and counter flow and level of humidification on membrane water saturation, flooding, water management, reactants concentrations and overall cell performance by observing parameters such as membrane protonic conductivity, current density, cell voltage and power. The CFD model studies and compares the use of air and oxygen in PEM fuel cells and the results show that for 100% relative humidity the performance obtained using pure oxygen is only marginally better than the one obtained when using air. This indicates that it is more beneficial to use air at the right conditions in PEM fuel cells given the cost of pure oxygen as the overall economic balance and the ease of use favour the utilisation of air.
这项工作研究了水的形成对质子交换膜燃料电池(PEMFC)性能的影响。这项工作从实验和理论两方面研究了 PEM 燃料电池中的水管理。实验使用配备 Nafion 膜的单堆 PEM 燃料电池进行,使用干燥和加湿的氢气和空气来评估其性能。获得的结果证实了燃料加湿对于提高燃料电池性能的重要性,所有加湿水平都比使用干燥氢气或干燥空气获得的性能更好。使用相对湿度为 50%的空气进行实验表明,与使用相对湿度为 100%的空气相比,燃料电池性能下降。实验数据为燃料电池的计算流体动力学模型提供了验证基础,该模型用于进一步研究,并对燃料电池性能进行参数分析,以研究流道板设计、平行和逆流等流动模式以及加湿水平对膜水饱和度、水淹、水管理、反应物浓度和整体电池性能的影响,通过观察膜质子电导率、电流密度、电池电压和功率等参数。CFD 模型研究并比较了在 PEM 燃料电池中使用空气和氧气的情况,结果表明,在 100%相对湿度下,使用纯氧获得的性能仅比使用空气获得的性能略有提高。这表明,考虑到纯氧的成本作为整体经济平衡以及使用便利性,在 PEM 燃料电池中使用适当条件下的空气更有利。