Suppr超能文献

基于双层 SVM 模型的蛋白质二级结构逐步分类算法。

A step-by-step classification algorithm of protein secondary structures based on double-layer SVM model.

机构信息

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, PR China.

College of Information Science and Engineering, Ocean University of China, Qingdao 266100, PR China.

出版信息

Genomics. 2020 Mar;112(2):1941-1946. doi: 10.1016/j.ygeno.2019.11.006. Epub 2019 Nov 15.

Abstract

In this paper, a step-by-step classification algorithm based on double-layer SVM model is constructed to predict the secondary structure of proteins. The most important feature of this algorithm is to improve the prediction accuracy of α+β and α/β classes through transforming the prediction of two classes of proteins, α+β and α/β classes, with low accuracy in the past, into the prediction of all-α and all-β classes with high accuracy. A widely-used dataset, 25PDB dataset with sequence similarity lower than 40%, is used to evaluate this method. The results show that this method has good performance, and on the basis of ensuring the accuracy of other three structural classes of proteins, the accuracy of α+β class proteins is improved significantly.

摘要

本文构建了一种基于双层 SVM 模型的逐步分类算法,用于预测蛋白质的二级结构。该算法的最重要特点是,通过将过去准确率较低的两类蛋白质(α+β 和 α/β 类)的预测转换为准确率较高的全-α和全-β类的预测,从而提高了对 α+β 和 α/β 类的预测准确性。该方法使用了一个广泛使用的数据集,即序列相似度低于 40%的 25PDB 数据集进行评估。结果表明,该方法具有良好的性能,在保证其他三种结构类蛋白质准确性的基础上,显著提高了 α+β 类蛋白质的准确性。

相似文献

1
A step-by-step classification algorithm of protein secondary structures based on double-layer SVM model.
Genomics. 2020 Mar;112(2):1941-1946. doi: 10.1016/j.ygeno.2019.11.006. Epub 2019 Nov 15.
2
Granular support vector machine to identify unknown structural classes of protein.
Int J Data Min Bioinform. 2015;12(4):451-67. doi: 10.1504/ijdmb.2015.070065.
3
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
BMC Bioinformatics. 2007 May 22;8 Suppl 4(Suppl 4):S2. doi: 10.1186/1471-2105-8-S4-S2.
6
BhairPred: prediction of beta-hairpins in a protein from multiple alignment information using ANN and SVM techniques.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W154-9. doi: 10.1093/nar/gki588.
7
A two-layer classification framework for protein fold recognition.
J Theor Biol. 2015 Jan 21;365:32-9. doi: 10.1016/j.jtbi.2014.09.032. Epub 2014 Sep 30.
8
A high-accuracy protein structural class prediction algorithm using predicted secondary structural information.
J Theor Biol. 2010 Dec 7;267(3):272-5. doi: 10.1016/j.jtbi.2010.09.007. Epub 2010 Sep 8.
9
Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance.
Interdiscip Sci. 2009 Dec;1(4):315-9. doi: 10.1007/s12539-009-0066-1. Epub 2009 Nov 14.
10
Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising.
J Mol Graph Model. 2017 Sep;76:260-273. doi: 10.1016/j.jmgm.2017.07.012. Epub 2017 Jul 14.

引用本文的文献

1
CASPredict: a web service for identifying Cas proteins.
PeerJ. 2021 Jul 30;9:e11887. doi: 10.7717/peerj.11887. eCollection 2021.
4
Identifying Antifreeze Proteins Based on Key Evolutionary Information.
Front Bioeng Biotechnol. 2020 Mar 26;8:244. doi: 10.3389/fbioe.2020.00244. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验