School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489, Berlin, Germany.
Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
Anal Bioanal Chem. 2019 Dec;411(30):8053-8061. doi: 10.1007/s00216-019-02167-5. Epub 2019 Nov 18.
Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model. Graphical Abstract.
声悬浮液滴被提议作为无壁的微反应室,用于高通量反应优化目的。无壁的设计旨在简化在微升体积中找到的优化反应条件的放大。高通量化学的后续研究需要一种快速、稳健和灵敏的分析方法,适用于在线检测。对于反应优化,目标分析的灵敏度相对较低就足够了,而快速、稳健和自动化的采样则至关重要。为了遵循这种方法,在本研究中,提出了将悬浮液滴直接耦合到自制的离子淌度谱仪(IMS)上。采样、转移到气相以及离子化都是通过单个采样体积暴露于中红外激光的共振输出来完成的。一旦形成,新生的空间和时间演化的分析物离子云需要从声限制阱中引导到离子淌度谱仪的入口。由于 IMS 是在常压下运行的,不能利用沿压力梯度的流体动力学。相反,通过双环电极离子光学中的静电势梯度来实现转移,将分析物离子云引导到 IMS 线性漂移管加速器的第一级。适当的大气压离子光学的设计基于 Wiley 和 McLaren 的原始真空离子光学设计。所得到的实验结果与基于碰撞模型的离子轨迹计算非常吻合。