Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
Cell Rep. 2019 Nov 19;29(8):2134-2143.e7. doi: 10.1016/j.celrep.2019.10.053.
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, usually occurs in middle-aged people. However, the molecular basis of age-related cumulative stress in ALS pathogenesis remains elusive. Here, we found that mice deficient in NPGPx (GPx7), an oxidative stress sensor, develop ALS-like phenotypes, including paralysis, muscle denervation, and motor neurons loss. Unlike normal spinal motor neurons that exhibit elevated O-GlcNAcylation against age-dependent oxidative stress, NPGPx-deficient spinal motor neurons fail to boost O-GlcNAcylation and exacerbate ROS accumulation, leading to cell death. Mechanistically, stress-activated NPGPx inhibits O-GlcNAcase (OGA) through disulfide bonding to fine-tune global O-GlcNAcylation. Pharmacological inhibition of OGA rescues spinal motor neuron loss in aged NPGPx-deficient mice. Furthermore, expression of NPGPx in ALS patients is significantly lower than in unaffected adults. These results suggest that NPGPx modulates O-GlcNAcylation by inhibiting OGA to cope with age-dependent oxidative stress and protect motor neurons from degeneration, providing a potential therapeutic axis for ALS.
肌萎缩侧索硬化症(ALS)是最常见的运动神经元疾病,通常发生在中年人身上。然而,ALS 发病机制中与年龄相关的累积应激的分子基础仍不清楚。在这里,我们发现缺乏氧化应激传感器 NPGPx(GPx7)的小鼠会出现类似 ALS 的表型,包括瘫痪、肌肉去神经支配和运动神经元丧失。与正常的脊髓运动神经元不同,后者会随着年龄相关的氧化应激而升高 O-GlcNAcylation,NPGPx 缺陷的脊髓运动神经元无法增强 O-GlcNAcylation 并加剧 ROS 积累,导致细胞死亡。在机制上,应激激活的 NPGPx 通过二硫键抑制 O-GlcNAcase(OGA)来精细调节全局 O-GlcNAcylation。OGA 的药理学抑制可挽救老年 NPGPx 缺陷小鼠的脊髓运动神经元丢失。此外,ALS 患者的 NPGPx 表达明显低于未受影响的成年人。这些结果表明,NPGPx 通过抑制 OGA 来调节 O-GlcNAcylation,以应对年龄相关的氧化应激并保护运动神经元免受退化,为 ALS 提供了一个潜在的治疗轴。