Suppr超能文献

用于治疗囊性纤维化的强效CFTR校正剂ABBV/GLPG-3221的发现。

Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis.

作者信息

Scanio Marc J C, Searle Xenia B, Liu Bo, Koenig John R, Altenbach Robert, Gfesser Gregory A, Bogdan Andrew, Greszler Stephen, Zhao Gang, Singh Ashvani, Fan Yihong, Swensen Andrew M, Vortherms Timothy, Manelli Arlene, Balut Corina, Jia Ying, Gao Wenqing, Yong Hong, Schrimpf Michael, Tse Chris, Kym Philip, Wang Xueqing

机构信息

Research and Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States.

出版信息

ACS Med Chem Lett. 2019 Oct 31;10(11):1543-1548. doi: 10.1021/acsmedchemlett.9b00377. eCollection 2019 Nov 14.

Abstract

Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2,3,4,5)-3-(-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-(()-tetrahydro-2-pyran-2-carbonyl)-5-(-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.

摘要

囊性纤维化(CF)是一种影响多个组织和器官的遗传性疾病。CF由该基因的突变引起,导致囊性纤维化跨膜传导调节因子(CFTR)蛋白不足或功能受损。该蛋白第508位苯丙氨酸的缺失(F508del-CFTR)是在CF患者中观察到的最常见突变。对这些患者最有效的治疗方法使用两类CFTR调节剂,校正剂和增强剂。CFTR校正剂可增加细胞表面的蛋白水平;CFTR增强剂可使CFTR通道在细胞表面功能性开放。三联组合疗法利用两种不同的校正分子(C1和C2)来进一步提高总体疗效。我们认识到需要开发一种C2校正剂系列,它有可能与我们现有的C1校正剂系列联合使用,并为CF患者提供强大的临床疗效。本文描述了CFTR C2校正剂吡咯烷系列的鉴定及其构效关系。这项工作导致了(2,3,4,5)-3-(-丁基)-4-((2-甲氧基-5-(三氟甲基)吡啶-3-基)甲氧基)-1-(()-四氢-2-吡喃-2-羰基)-5-(-甲苯基)吡咯烷-2-羧酸(ABBV/GLPG-3221)的发现和选择,该化合物已进入临床试验阶段。

相似文献

1
Discovery of ABBV/GLPG-3221, a Potent Corrector of CFTR for the Treatment of Cystic Fibrosis.
ACS Med Chem Lett. 2019 Oct 31;10(11):1543-1548. doi: 10.1021/acsmedchemlett.9b00377. eCollection 2019 Nov 14.
2
Biological Characterization of F508delCFTR Protein Processing by the CFTR Corrector ABBV-2222/GLPG2222.
J Pharmacol Exp Ther. 2020 Jan;372(1):107-118. doi: 10.1124/jpet.119.261800. Epub 2019 Nov 15.
4
Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis.
Bioorg Med Chem Lett. 2022 Sep 15;72:128843. doi: 10.1016/j.bmcl.2022.128843. Epub 2022 Jun 7.
5
Identification of GLPG/ABBV-2737, a Novel Class of Corrector, Which Exerts Functional Synergy With Other CFTR Modulators.
Front Pharmacol. 2019 May 9;10:514. doi: 10.3389/fphar.2019.00514. eCollection 2019.
6
F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
Expert Opin Ther Pat. 2015;25(9):991-1002. doi: 10.1517/13543776.2015.1045878. Epub 2015 May 15.
8
Potentiators of Defective ΔF508-CFTR Gating that Do Not Interfere with Corrector Action.
Mol Pharmacol. 2015 Oct;88(4):791-9. doi: 10.1124/mol.115.099689. Epub 2015 Aug 5.
9
CFTR Rescue in Intestinal Organoids with GLPG/ABBV-2737, ABBV/GLPG-2222 and ABBV/GLPG-2451 Triple Therapy.
Front Mol Biosci. 2021 Sep 15;8:698358. doi: 10.3389/fmolb.2021.698358. eCollection 2021.
10
Recent Progress in the Discovery and Development of Small-Molecule Modulators of CFTR.
Prog Med Chem. 2018;57(1):235-276. doi: 10.1016/bs.pmch.2018.01.001. Epub 2018 Feb 19.

引用本文的文献

2
Functional Consequences of CFTR Interactions in Cystic Fibrosis.
Int J Mol Sci. 2024 Mar 16;25(6):3384. doi: 10.3390/ijms25063384.
3
Understanding CFTR Functionality: A Comprehensive Review of Tests and Modulator Therapy in Cystic Fibrosis.
Cell Biochem Biophys. 2024 Mar;82(1):15-34. doi: 10.1007/s12013-023-01200-w. Epub 2023 Dec 4.
4
Clinical development and informatics analysis of natural and semi-synthetic flavonoid drugs: A critical review.
J Adv Res. 2024 Sep;63:269-284. doi: 10.1016/j.jare.2023.11.007. Epub 2023 Nov 8.
5
Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides.
Nat Commun. 2023 Aug 4;14(1):4688. doi: 10.1038/s41467-023-40409-4.
6
The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold?
Expert Opin Pharmacother. 2023 Sep-Dec;24(14):1545-1565. doi: 10.1080/14656566.2023.2230129. Epub 2023 Jul 3.
7
Zinc-Catalyzed Enantioselective [3+2] Cycloaddition of Azomethine Ylides Using Planar Chiral [2.2]Paracyclophane-Imidazoline N,O-ligands.
Angew Chem Int Ed Engl. 2022 Aug 15;61(33):e202205516. doi: 10.1002/anie.202205516. Epub 2022 Jun 9.
8
An Update on CFTR Modulators as New Therapies for Cystic Fibrosis.
Paediatr Drugs. 2022 Jul;24(4):321-333. doi: 10.1007/s40272-022-00509-y. Epub 2022 May 16.
9
Synthesis of bioactive fluoropyrrolidines copper(i)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides.
Chem Sci. 2021 Dec 7;13(5):1398-1407. doi: 10.1039/d1sc04595d. eCollection 2022 Feb 2.
10
Fueling the Pipeline via Innovations in Organic Synthesis.
ACS Med Chem Lett. 2021 Aug 27;12(9):1365-1373. doi: 10.1021/acsmedchemlett.1c00351. eCollection 2021 Sep 9.

本文引用的文献

1
An overview on chemical structures as ΔF508-CFTR correctors.
Eur J Med Chem. 2019 Oct 15;180:430-448. doi: 10.1016/j.ejmech.2019.07.037. Epub 2019 Jul 15.
2
Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis.
Chem Rev. 2019 May 8;119(9):5537-5606. doi: 10.1021/acs.chemrev.8b00532. Epub 2019 Jan 4.
3
Triple CFTR Modulator Therapy for Cystic Fibrosis.
N Engl J Med. 2018 Oct 25;379(17):1671-1672. doi: 10.1056/NEJMe1811996. Epub 2018 Oct 18.
4
VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
N Engl J Med. 2018 Oct 25;379(17):1599-1611. doi: 10.1056/NEJMoa1807119. Epub 2018 Oct 18.
5
VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles.
N Engl J Med. 2018 Oct 25;379(17):1612-1620. doi: 10.1056/NEJMoa1807120. Epub 2018 Oct 18.
8
Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR.
Am J Respir Crit Care Med. 2018 Jan 15;197(2):214-224. doi: 10.1164/rccm.201704-0717OC.
9
Therapeutic approaches to CFTR dysfunction: From discovery to drug development.
J Cyst Fibros. 2018 Mar;17(2S):S14-S21. doi: 10.1016/j.jcf.2017.08.013. Epub 2017 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验