Department of Electrical Engineering, Kyunghee University, 1732 Deogyeong-Daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
Nanotechnology. 2020 Mar 13;31(11):115603. doi: 10.1088/1361-6528/ab5b39. Epub 2019 Nov 25.
Rhenium disulfide (ReS) is a transition metal dichalcogenide with a layer-independent direct bandgap. Notably, the weak interlayer coupling owing to its T-phase structure enables multi-layer ReS to behave similarly to decoupled monolayers. This inherent characteristic makes continuous multilayer ReS film a unique platform for large-area electronic applications. To date, the bulk of work on ReS has been conducted using mechanically exfoliated samples or small size flakes (<1 mm) with no potential for large-scale electronics. A chemical vapor deposition (CVD) synthesis of a large area, continuous ReS film directly on a SiO substrate is also known to be more challenging compared with that of other 2D materials, such as MoS and WS. This is partly due to its tendency to grow into discrete dendritic structures. In this study, a large-area (>1 cm), continuous multilayer ReS film is directly synthesized on a SiO substrate without any transfer process. The polycrystalline ReS film synthesized by this method exhibits one of the fastest photoresponse speeds (0.03 s rise time and 0.025 s decay time) among the reported CVD films. The photoresponsivity R was also the highest among large-area CVD films. The synthesis method for a continuous multilayer ReS film is amenable to large-scale integration and will pave the way for practical optoelectronic applications based on 2D layered materials.
二硫化铼 (ReS) 是一种具有层独立直接带隙的过渡金属二卤化物。值得注意的是,由于其 T 相结构导致的弱层间耦合使得多层 ReS 能够类似于解耦的单层。这种固有特性使得连续多层 ReS 薄膜成为大面积电子应用的独特平台。迄今为止,ReS 的大部分工作都是使用机械剥离的样品或没有大规模电子应用潜力的小尺寸薄片(<1 毫米)进行的。与其他二维材料(如 MoS 和 WS)相比,在 SiO 衬底上直接化学气相沉积 (CVD) 合成大面积、连续的 ReS 薄膜也更具挑战性。这部分是由于它倾向于生长成离散的枝状结构。在这项研究中,在没有任何转移过程的情况下,在 SiO 衬底上直接合成了大面积 (>1cm) 的连续多层 ReS 薄膜。通过这种方法合成的多晶 ReS 薄膜表现出报告的 CVD 薄膜中最快的光响应速度之一(0.03 s 的上升时间和 0.025 s 的衰减时间)。光响应率 R 也是大面积 CVD 薄膜中最高的。连续多层 ReS 薄膜的合成方法适合大规模集成,并将为基于二维层状材料的实际光电应用铺平道路。