State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.
Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
Nanoscale. 2019 Dec 28;11(48):23217-23225. doi: 10.1039/c9nr07832k. Epub 2019 Nov 29.
This work reports a fundamental study on the relationship of the electronic structure, catalytic activity and surface reconstruction process of Fe doped NiS (FeNiS) for the oxygen evolution reaction (OER). A combined photoemission and X-ray absorption spectroscopic study reveals that Fe doping introduces more occupied Fe 3d states at the top of the valence band and thereby induces a metallic phase. Meanwhile, Fe doping also significantly increases the OER activity and results in much better stability with the optimum found for FeNiS. More importantly, we performed detailed characterization to track the evolution of the structure and composition of the catalysts after different cycles of OER testing. Our results further confirmed that the catalysts gradually transform into amorphous (oxy)hydroxides which are the actual active species for the OER. However, a fast phase transformation in NiS is accompanied by a decrease of OER activity, because of the formation of a thick insulating NiOOH layer limiting electron transfer. On the other hand, Fe doping retards the process of transformation, because of a shorter Fe-S bond length (2.259 Å) than Ni-S (2.400 Å), explaining the better electrochemical stability of FeNiS. These results suggest that the formation of a thin surface layer of NiFe (oxy)hydroxide as an active OER catalyst and the remaining FeNiS as a conductive core for fast electron transfer is the base for the high OER activity of FeNiS. Our work provides important insight and design principle for metal chalcogenides as highly active OER catalysts.
这项工作报道了关于掺杂铁的硫化镍(FeNiS)的电子结构、催化活性和表面重构过程与析氧反应(OER)之间关系的基础研究。光电发射和 X 射线吸收光谱联合研究表明,铁掺杂在价带顶部引入了更多占据的 Fe 3d 态,从而诱导出金属相。同时,铁掺杂还显著提高了 OER 活性,并表现出更好的稳定性,最佳的是 FeNiS。更重要的是,我们进行了详细的表征,以跟踪催化剂在不同 OER 测试循环后的结构和组成的演变。我们的结果进一步证实,催化剂逐渐转化为非晶(氧)氢氧化物,这是非晶(氧)氢氧化物是 OER 的实际活性物质。然而,NiS 的快速相变伴随着 OER 活性的降低,因为形成了一层厚厚的绝缘 NiOOH 层限制了电子转移。另一方面,铁掺杂减缓了转化过程,因为 Fe-S 键长(2.259Å)比 Ni-S(2.400Å)短,这解释了 FeNiS 具有更好的电化学稳定性。这些结果表明,形成薄的 NiFe(氧)氢氧化物表面层作为活性 OER 催化剂,而剩余的 FeNiS 作为快速电子转移的导电核,是 FeNiS 具有高 OER 活性的基础。我们的工作为金属硫属化物作为高活性 OER 催化剂提供了重要的见解和设计原则。