Suppr超能文献

MnO 封装的静电纺丝 TiO2 纳米纤维作为非对称超级电容器的电极。

MnO encapsulated electrospun TiO nanofibers as electrodes for asymmetric supercapacitors.

机构信息

Conducting Polymer Lab, Department of Physics, Indian Institute of Technology Madras, Chennai-600036, India. Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, United States of America. Department of Physics, Government Arts and Science College, Calicut-673018, India.

出版信息

Nanotechnology. 2020 Mar 20;31(12):125401. doi: 10.1088/1361-6528/ab5d64. Epub 2019 Nov 29.

Abstract

We report a facile technique to fabricate manganese dioxide (MnO) encapsulated titanium dioxide (TiO) nanofiber heterostructure for its use as an electrode material in aqueous electrolyte based asymmetric supercapacitor (SC). MnO coated TiO nanofibers, prepared by electrospinning and post-hydrothermal process exhibited superior electrochemical properties in aqueous NaSO electrolyte. The MnO shell with average thickness of approximately 10 nm contributed to the high electrochemical performance for charge storage by redox reaction and intercalation mechanisms, while the anatase phase TiO core provided an easy pathway for electronic transport with additional electrochemical stability over thousands of charge-discharge cycles. An asymmetric SC designed from the MnO-TiO nanofiber electrode and single walled carbon nanotubes electrode showed high operating voltage window (2.2 V) with maximum gravimetric capacitance of 111.5 F g.

摘要

我们报告了一种制备二氧化锰(MnO)包裹二氧化钛(TiO)纳米纤维异质结构的简便技术,将其用作基于水系电解质的不对称超级电容器(SC)中的电极材料。通过静电纺丝和后水热工艺制备的MnO 包覆 TiO 纳米纤维在水系 NaSO 电解质中表现出优异的电化学性能。平均厚度约为 10nm 的 MnO 壳层通过氧化还原反应和嵌入机制促进了电荷存储的高电化学性能,而锐钛矿相 TiO 核提供了电子传输的便捷途径,并且在数千次充放电循环中具有额外的电化学稳定性。由 MnO-TiO 纳米纤维电极和单壁碳纳米管电极设计的不对称 SC 具有 2.2V 的高工作电压窗口,最大重量比电容为 111.5F g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验