文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

拓扑异构酶 I 活性和对喜树碱的敏感性在乳腺癌衍生细胞中的比较研究。

Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: a comparative study.

机构信息

Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.

Present Address: Department of Biology, Copenhagen University, Copenhagen, Denmark.

出版信息

BMC Cancer. 2019 Nov 29;19(1):1158. doi: 10.1186/s12885-019-6371-0.


DOI:10.1186/s12885-019-6371-0
PMID:31783818
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6884793/
Abstract

BACKGROUND: Camptothecin (CPT) and its derivatives are currently used as second- or third-line treatment for patients with endocrine-resistant breast cancer (BC). These drugs convert nuclear enzyme DNA topoisomerase I (TOP1) to a cell poison with the potential to damage DNA by increasing the half-life of TOP1-DNA cleavage complexes (TOP1cc), ultimately resulting in cell death. In small and non-randomized trials for BC, researchers have observed extensive variation in CPT response rates, ranging from 14 to 64%. This variability may be due to the absence of reliable selective parameters for patient stratification. BC cell lines may serve as feasible models for generation of functional criteria that may be used to predict drug sensitivity for patient stratification and, thus, lead to more appropriate applications of CPT in clinical trials. However, no study published to date has included a comparison of multiple relevant parameters and CPT response across cell lines corresponding to specific BC subtypes. METHOD: We evaluated the levels and possible associations of seven parameters including the status of the TOP1 gene (i.e. amplification), TOP1 protein expression level, TOP1 activity and CPT susceptibility, activity of the tyrosyl-DNA phosphodiesterase 1 (TDP1), the cellular CPT response and the cellular growth rate across a representative panel of BC cell lines, which exemplifies three major BC subtypes: Luminal, HER2 and TNBC. RESULTS: In all BC cell lines analyzed (without regard to subtype classification), we observed a significant overall correlation between growth rate and CPT response. In cell lines derived from Luminal and HER2 subtypes, we observed a correlation between TOP1 gene copy number, TOP1 activity, and CPT response, although the data were too limited for statistical analyses. In cell lines representing Luminal and TNBC subtypes, we observed a direct correlation between TOP1 protein abundancy and levels of enzymatic activity. In all three subtypes (Luminal, HER2, and TNBC), TOP1 exhibits approximately the same susceptibility to CPT. Of the three subtypes examined, the TNBC-like cell lines exhibited the highest CPT sensitivity and were characterized by the fastest growth rate. This indicates that breast tumors belonging to the TNBC subtype, may benefit from treatment with CPT derivatives. CONCLUSION: TOP1 activity is not a marker for CPT sensitivity in breast cancer.

摘要

背景:喜树碱(CPT)及其衍生物目前被用作内分泌耐药性乳腺癌(BC)患者的二线或三线治疗药物。这些药物将核酶 DNA 拓扑异构酶 I(TOP1)转化为细胞毒素,通过增加 TOP1-DNA 断裂复合物(TOP1cc)的半衰期,有可能损伤 DNA,最终导致细胞死亡。在针对 BC 的小型和非随机试验中,研究人员观察到 CPT 反应率的广泛变化,范围从 14%到 64%。这种可变性可能是由于缺乏可靠的选择性参数来对患者进行分层。BC 细胞系可用作生成功能标准的可行模型,这些标准可用于预测药物敏感性以对患者进行分层,从而使 CPT 在临床试验中的应用更加合理。然而,迄今为止,没有发表的研究包括对跨对应于特定 BC 亚型的细胞系的多个相关参数和 CPT 反应进行比较。

方法:我们评估了七个参数的水平和可能的相关性,包括 TOP1 基因的状态(即扩增)、TOP1 蛋白表达水平、TOP1 活性和 CPT 敏感性、酪氨酸-DNA 磷酸二酯酶 1(TDP1)的活性、细胞 CPT 反应和细胞生长率,这些参数代表了三种主要的 BC 亚型:Luminal、HER2 和三阴性乳腺癌(TNBC)。

结果:在所分析的所有 BC 细胞系中(不考虑亚型分类),我们观察到生长速度和 CPT 反应之间存在显著的总体相关性。在源自 Luminal 和 HER2 亚型的细胞系中,我们观察到 TOP1 基因拷贝数、TOP1 活性和 CPT 反应之间存在相关性,尽管数据有限,无法进行统计分析。在代表 Luminal 和 TNBC 亚型的细胞系中,我们观察到 TOP1 蛋白丰度与酶活性水平之间存在直接相关性。在所有三种亚型(Luminal、HER2 和 TNBC)中,TOP1 对 CPT 的敏感性大致相同。在所检查的三种亚型中,类似 TNBC 的细胞系对 CPT 的敏感性最高,且生长速度最快。这表明属于 TNBC 亚型的乳腺癌可能受益于 CPT 衍生物的治疗。

结论:TOP1 活性不是乳腺癌中 CPT 敏感性的标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/683e99bf76c0/12885_2019_6371_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/fa25d8278389/12885_2019_6371_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/04ea284cee26/12885_2019_6371_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/1288ad805101/12885_2019_6371_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/bf01ff598ce6/12885_2019_6371_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/683e99bf76c0/12885_2019_6371_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/fa25d8278389/12885_2019_6371_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/04ea284cee26/12885_2019_6371_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/1288ad805101/12885_2019_6371_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/bf01ff598ce6/12885_2019_6371_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37f/6884793/683e99bf76c0/12885_2019_6371_Fig5_HTML.jpg

相似文献

[1]
Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: a comparative study.

BMC Cancer. 2019-11-29

[2]
Identification and characterization of a deletion mutant of DNA topoisomerase I mRNA in a camptothecin-resistant subline of human colon carcinoma.

Jpn J Cancer Res. 2000-5

[3]
Characterization of a novel topoisomerase I mutation from a camptothecin-resistant human prostate cancer cell line.

Cancer Res. 2001-3-1

[4]
Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells.

Cancer Res. 2001-8-1

[5]
Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancer.

J Med Chem. 2021-6-10

[6]
In vivo sequencing of camptothecin-induced topoisomerase I cleavage sites in human colon carcinoma cells.

Nucleic Acids Res. 1997-10-15

[7]
Structural insight of DNA topoisomerases I from camptothecin-producing plants revealed by molecular dynamics simulations.

Phytochemistry. 2015-5

[8]
Role of tyrosyl-DNA phosphodiesterase 1 and inter-players in regulation of tumor cell sensitivity to topoisomerase I inhibition.

Biochem Pharmacol. 2011-9-29

[9]
Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors.

Biochim Biophys Acta. 2013-1

[10]
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3'-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1).

DNA Repair (Amst). 2020

引用本文的文献

[1]
Hydrogel bead-based isothermal detection (BEAD-ID) for assessing the activity of DNA-modifying enzymes.

iScience. 2024-11-6

[2]
Anticancer properties and metabolomic profiling of Shorea roxburghii extracts toward gastrointestinal cancer cell lines.

BMC Complement Med Ther. 2024-4-30

[3]
Clinical Progress of Targeted Therapy for Breast Cancer: A Comprehensive Review.

Curr Cancer Drug Targets. 2025

[4]
Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs.

Pharmaceuticals (Basel). 2023-12-15

[5]
Drug-Induced Conformational Dynamics of P-Glycoprotein Underlies the Transport of Camptothecin Analogs.

Int J Mol Sci. 2023-11-7

[6]
Topoisomerase 1 Activity Is Reduced in Response to Thermal Stress in Fruit Flies and in Human HeLa Cells.

Biosensors (Basel). 2023-10-24

[7]
Bioconjugation of Functionalized Oligodeoxynucleotides with Fluorescence Reporters for Nanoparticle Assembly.

Methods Mol Biol. 2023

[8]
A pyroptosis-related gene signature for prognostic and immunological evaluation in breast cancer.

Front Oncol. 2022-12-23

[9]
Targeting Breast Cancer: An Overlook on Current Strategies.

Int J Mol Sci. 2023-2-11

[10]
The Potential of Topoisomerase Inhibitor-Based Antibody-Drug Conjugates.

Pharmaceutics. 2022-8-16

本文引用的文献

[1]
Minimal Resection Takes Place during Break-Induced Replication Repair of Collapsed Replication Forks and Is Controlled by Strand Invasion.

Cell Rep. 2019-1-22

[2]
HER2 in stemness and epithelial-mesenchymal plasticity of breast cancer.

Clin Transl Oncol. 2018-10-10

[3]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[4]
Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation.

Nucleic Acids Res. 2018-1-25

[5]
Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping.

J Cancer. 2017-9-12

[6]
Gemcitabine-camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics.

Biomater Sci. 2017-8-22

[7]
Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer.

Mol Oncol. 2017-2

[8]
Quantification and expert evaluation of evidence for chemopredictive biomarkers to personalize cancer treatment.

Oncotarget. 2017-6-6

[9]
Expression Patterns of Biomarkers in Primary Tumors and Corresponding Metastases in Breast Cancer.

Appl Immunohistochem Mol Morphol. 2018-1

[10]
Molecular heterogeneity in breast cancer: State of the science and implications for patient care.

Semin Cell Dev Biol. 2016-8-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索