Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
Mol Cell Endocrinol. 2020 Feb 5;501:110653. doi: 10.1016/j.mce.2019.110653. Epub 2019 Nov 27.
This review focuses on the cellular and molecular aspects underlying familial neurohypophyseal diabetes insipidus (DI), a rare disorder that is usually transmitted in an autosomal-dominant fashion. The disease, manifesting in infancy or early childhood and gradually progressing in severity, is caused by fully penetrant heterozygous mutations in the gene encoding prepro-vasopressin-neurophysin II, the precursor of the antidiuretic hormone arginine vasopressin (AVP). Post mortem studies in affected adults have shown cell degeneration in vasopressinergic hypothalamic nuclei. Studies in cells expressing pathogenic mutants and knock-in rodent models have shown that the mutant precursors are folding incompetent and fail to exit the endoplasmic reticulum (ER), as occurs normally with proteins that have entered the regulated secretory pathway. A portion of these mutants is eliminated via ER-associated degradation (ERAD) by proteasomes after retrotranslocation to the cytosol. Another portion forms large disulfide-linked fibrillar aggregates within the ER, in which wild-type precursor is trapped. Aggregation capacity is independently conferred by two domains of the prohormone, namely the AVP moiety and the C-terminal glycopeptide (copeptin). The same domains are also required for packaging into dense-core secretory granules and regulated secretion, suggesting a disturbed balance between the physiological self-aggregation at the trans-Golgi network and avoiding premature aggregate formation at the ER in the disease. The critical role of ERAD in maintaining physiological water balance has been underscored by experiments in mice expressing wild-type AVP but lacking critical components of the ERAD machinery. These animals also develop DI and show amyloid-like aggregates in the ER lumen. Thus, the capacity of the ERAD is exceeded in autosomal dominant DI, which can be viewed as a neurodegenerative disorder associated with the formation of amyloid ER aggregates. While DI symptoms develop prior to detectable cell death in transgenic DI mice, the eventual loss of vasopressinergic neurons is accompanied by autophagy, but the mechanism leading to cell degeneration in autosomal dominant neurohypophyseal DI still remains unknown.
这篇综述重点介绍了家族性神经垂体性尿崩症(DI)的细胞和分子基础,该病是一种罕见的疾病,通常以常染色体显性遗传方式传递。这种疾病在婴儿期或幼儿期表现出来,并逐渐加重,是由抗利尿激素精氨酸加压素(AVP)前体基因编码的前脯氨酸血管加压素-神经垂体 II 的完全外显杂合突变引起的。在受影响的成年人的死后研究中,已经显示出加压素能下丘脑核中的细胞退化。在表达致病性突变体的细胞和敲入啮齿动物模型中的研究表明,突变前体是折叠无能的,不能像正常情况下已经进入调节分泌途径的蛋白质那样离开内质网(ER)。这些突变体的一部分通过蛋白酶体在逆行转运到细胞质后被 ER 相关降解(ERAD)消除。另一部分在 ER 内形成大的二硫键纤维状聚集体,其中野生型前体被捕获。该前激素的两个结构域(AVP 部分和 C 末端糖肽(copeptin))独立赋予聚合能力。同样的结构域对于包装到致密核心分泌颗粒和调节分泌也是必需的,这表明在疾病中,生理自我聚集在反式高尔基体网络和避免 ER 中过早形成聚集之间的平衡被打破。在表达野生型 AVP 但缺乏 ERAD 机制关键成分的小鼠实验中,强调了 ERAD 在维持生理水平衡中的关键作用。这些动物也发展为 DI,并在 ER 腔中显示出类淀粉样聚集物。因此,在常染色体显性 DI 中,ERAD 的能力超过了,这可以被视为与形成淀粉样 ER 聚集相关的神经退行性疾病。虽然在转基因 DI 小鼠中,在可检测到细胞死亡之前就出现了 DI 症状,但最终的血管加压素能神经元的丧失伴随着自噬,但导致常染色体显性神经垂体性 DI 中细胞退化的机制仍然未知。