School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; ICMR-National Institute of Malaria Research, Dwarka, Sector-8, New Delhi, 110077, India.
School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
Comput Biol Chem. 2020 Feb;84:107166. doi: 10.1016/j.compbiolchem.2019.107166. Epub 2019 Nov 17.
Tamoxifen is a prodrug and cytochrome P450 2C9 (CYP2C9) has a significant role in the formation of a therapeutically more potent metabolite (4-hydroxytamoxifen) than tamoxifen. Since CYP2C9 exhibits genetic polymorphism, it may contribute to different phenotypic drug response. Moreover, it may be misleading if the possibility of heterogeneous clinical observations of pharmacogenetic investigations is ignored. Above all, clinical investigation of all the polymorphic variants is beyond the scope of a pharmacogenetic study. Therefore, in order to understand the genotype-phenotype association, it is aimed to study the interatomic interactions of amino acid substitutions in CYP2C9 variants in the presence of tamoxifen. Computational structural biology approach was adopted to study the effect of amino acid substitutions of polymorphic variants of CYP2C9 R144C (*2), I359 L (*3), D360E (*5), R150H (*8), R335W (*11) and L90 P (*13) on the flexibility of the enzyme in the presence of tamoxifen. The mutations were selected based on previously determined associations on genotype and clinical outcome of drugs. Against the above plane, docking of tamoxifen was performed with the crystal structure representing the wild-type form of the enzyme. The docked conformation of tamoxifen was favourable for 4-hydroxylation with the site of metabolism within 5 Å of oxyferrylheme consistent with the drug metabolism pathway of tamoxifen. Further, the effect of amino acid substitutions CYP2C9 variants on the protein flexibility in the presence of tamoxifen in 4-hydroxy orientation was evaluated by molecular dynamics (MD) simulations. Distinct protein flexibility modulations between variants were observed in F/G segment constituting the substrate access/egress channels, helix B' involved with substrate specificity and helix I associated with the holding of substrates. Root Mean Square Fluctuation analysis of the trajectories of variants exhibited fluctuations in F/G segment, B' and I helix. Dominant motions in the structure were identified by performing Principal Component Analysis on trajectories and the porcupine plot depicted displaced F/G segment in variants. Thus, the interatomic interaction study of CYP2C9 variants in the presence of tamoxifen predicts the plausible effect of the investigated variants on the therapeutic outcome of tamoxifen. It is presumed that the observations of the study would be meaningful to understand tamoxifen pharmacogenetics.
他莫昔芬是一种前药,细胞色素 P450 2C9(CYP2C9)在形成比他莫昔芬更具治疗活性的代谢产物(4-羟基他莫昔芬)方面发挥着重要作用。由于 CYP2C9 表现出遗传多态性,它可能导致不同表型的药物反应。此外,如果忽略药物遗传学研究中异质临床观察的可能性,可能会产生误导。最重要的是,对所有多态变体的临床研究超出了药物遗传学研究的范围。因此,为了了解基因型-表型相关性,旨在研究他莫昔芬存在下 CYP2C9 变体中氨基酸取代的原子间相互作用。采用计算结构生物学方法研究 CYP2C9 R144C(*2)、I359L(*3)、D360E(*5)、R150H(*8)、R335W(*11)和 L90P(*13)的多态变体中氨基酸取代对酶在他莫昔芬存在下的灵活性的影响。根据先前确定的基因型与药物临床结果的相关性,选择了突变。在上述平面上,用代表酶野生型形式的晶体结构进行他莫昔芬对接。他莫昔芬的对接构象有利于 4-羟基化,代谢部位与氧合铁血红素的距离在 5Å 以内,与他莫昔芬的药物代谢途径一致。此外,通过分子动力学(MD)模拟评估 CYP2C9 变体在 4-羟基化方向上存在他莫昔芬时对蛋白质灵活性的影响。在构成底物进入/退出通道的 F/G 段、与底物特异性相关的 B' 螺旋和与底物结合相关的 I 螺旋中观察到变体之间明显的蛋白质灵活性调制。对轨迹的均方根波动分析表明,在 F/G 段、B' 和 I 螺旋中存在波动。通过对轨迹进行主成分分析并描绘出变体中位移的 F/G 段,确定了结构中的主导运动。因此,在他莫昔芬存在下对 CYP2C9 变体的原子间相互作用研究预测了所研究变体对他莫昔芬治疗效果的可能影响。据推测,对该研究的观察结果将有助于理解他莫昔芬药物遗传学。