Suppr超能文献

多约束最小方差波束形成器 (MCMV) 在连通性分析中的性能。

Multiple constrained minimum variance beamformer (MCMV) performance in connectivity analyses.

机构信息

Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.

Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada.

出版信息

Neuroimage. 2020 Mar;208:116386. doi: 10.1016/j.neuroimage.2019.116386. Epub 2019 Nov 28.

Abstract

Functional brain connectivity is increasingly being seen as critical for cognition, perception and motor control. Magnetoencephalography and electroencephalography are modalities that offer noninvasive mapping of electrophysiological interactions among brain regions, yet suffer from signal leakage and signal cancellation when estimating brain activity. This leads to biased connectivity values which complicate interpretation. In this study, we test the hypothesis that a Multiple Constrained Minimum Variance beamformer (MCMV) outperforms the more traditional Linearly Constrained Minimum Variance beamformer (LCMV) for estimation of electrophysiological connectivity. To this end, MCMV and LCMV performance is compared in task related analyses with both simulated data and human MEG recordings of visual steady state signals, and in resting state analyses with simulated data and human MEG data of 89 subjects. In task related scenarios connectivity was estimated using coherence and phase locking values, whereas envelope correlations were used for the resting state data. We also introduce a novel Augmented Pairwise MCMV (APW-MCMV) approach for signal leakage suppression in resting state analyses and assess its performance against LCMV and more conventional MCMV approaches. We demonstrate that with MCMV effects of signal mixing and coherent source cancellation are greatly reduced in both task related and resting state conditions, while in contrast to other approaches 0- and short time lag interactions are preserved. In addition, we demonstrate that in resting state analyses, APW-MCMV strongly reduces spurious connections while better controlling for false negatives compared to more conservative measures such as symmetrical orthogonalization.

摘要

功能脑连接越来越被视为认知、感知和运动控制的关键。脑磁图和脑电图是提供脑区之间电生理相互作用无创映射的模态,但在估计脑活动时会受到信号泄漏和信号消除的影响。这导致连接值存在偏差,从而使解释变得复杂。在这项研究中,我们测试了一个假设,即多约束最小方差波束形成器(MCMV)比传统的线性约束最小方差波束形成器(LCMV)在估计电生理连接方面表现更好。为此,我们比较了 MCMV 和 LCMV 在任务相关分析中的性能,包括模拟数据和人类 MEG 记录的视觉稳态信号,以及模拟数据和 89 名人类 MEG 数据的静息状态分析。在任务相关的情况下,使用相干性和锁相值来估计连接,而对于静息状态数据,则使用包络相关性。我们还引入了一种新的增强成对 MCMV(APW-MCMV)方法来抑制静息状态分析中的信号泄漏,并评估其与 LCMV 和更传统的 MCMV 方法相比的性能。我们证明,在任务相关和静息状态条件下,使用 MCMV 可以大大减少信号混合和相干源消除的影响,而与其他方法不同的是,0 和短时间延迟相互作用得以保留。此外,我们证明,在静息状态分析中,APW-MCMV 可以大大减少虚假连接,同时与更保守的措施(如对称正交化)相比,更好地控制假阴性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验